4,293 research outputs found

    Optimal Energy Estimation in Path-Integral Monte Carlo Simulations

    Full text link
    We investigate the properties of two standard energy estimators used in path-integral Monte Carlo simulations. By disentangling the variance of the estimators and their autocorrelation times we analyse the dependence of the performance on the update algorithm and present a detailed comparison of refined update schemes such as multigrid and staging techniques. We show that a proper combination of the two estimators leads to a further reduction of the statistical error of the estimated energy with respect to the better of the two without extra cost.Comment: 45 pp. LaTeX, 22 Postscript Figure

    Witnessing the birth of a supermassive protostar

    Full text link
    The detection of z>6\rm z>6 quasars reveals the existence of supermassive black holes of a few 109 M\rm 10^9~M_{\odot}. One of the potential pathways to explain their formation in the infant universe is the so-called direct collapse model which provides massive seeds of 105106 M\rm 10^5-10^6~M_{\odot}. An isothermal direct collapse mandates that halos should be of a primordial composition and the formation of molecular hydrogen remains suppressed in the presence of a strong Lyman Werner flux. In this study, we perform high resolution cosmological simulations for two massive primordial halos employing a detailed chemical model which includes H\rm H^- cooling as well as realistic opacities for both the bound-free H\rm H^- emission and the Rayleigh scattering of hydrogen atoms. We are able to resolve the collapse up to unprecedentedly high densities of 103 g/cm3\rm \sim 10^{-3}~g/cm^3 and to scales of about 104\rm 10^{-4} AU. Our results show that the gas cools down to \rm \sim 5000 K in the presence of H\rm H^- cooling, and induces fragmentation at scales of about 8000 AU in one of the two simulated halos, which may lead to the formation of a binary. In addition, fragmentation also occurs on the AU scale in one of the halos but the clumps are expected to merge on short time scales. Our results confirm that H\rm H^- cooling does not prevent the formation of a supermassive star and the trapping of cooling radiation stabilises the collapse on small scales.Comment: Accpeted version, to appear in MNRAS, comments are still welcome and high resolution version is available at http://www2.iap.fr/users/latif/DCBH.pd

    Binary spinning black hole Hamiltonian in canonical center-of-mass and rest-frame coordinates through higher post-Newtonian order

    Full text link
    The recently constructed Hamiltonians for spinless binary black holes through third post-Newtonian order and for spinning ones through formal second post-Newtonian order, where the spins are counted of zero post-Newtonian order, are transformed into fully canonical center-of-mass and rest-frame variables. The mixture terms in the Hamiltonians between center-of-mass and rest-frame variables are in accordance with the relation between the total linear momentum and the center-of-mass velocity as demanded by global Lorentz invariance. The various generating functions for the center-of-mass and rest-frame canonical variables are explicitly given in terms of the single-particle canonical variables. The no-interaction theorem does not apply because the world-line condition of Lorentz covariant position variables is not imposed.Comment: 18 pages, no figure

    Temperature induced phase averaging in one-dimensional mesoscopic systems

    Full text link
    We analyse phase averaging in one-dimensional interacting mesoscopic systems with several barriers and show that for incommensurate positions an independent average over several phases can be induced by finite temperature. For three strong barriers with conductances G_i and mutual distances larger than the thermal length, we obtain G ~ sqrt{G_1 G_2 G_3} for the total conductance G. For an interacting wire, this implies power laws in G(T) with novel exponents, which we propose as an experimental fingerprint to distinguish temperature induced phase averaging from dephasing.Comment: 6 pages, 5 figures; added one figure; slightly extende

    Stable periodic density waves in dipolar Bose-Einstein condensates trapped in optical lattices

    Full text link
    Density-wave patterns in (quasi-) discrete media with local interactions are known to be unstable. We demonstrate that \emph{stable} double- and triple- period patterns (DPPs and TPPs), with respect to the period of the underlying lattice, exist in media with nonlocal nonlinearity. This is shown in detail for dipolar Bose-Einstein condensates (BECs), loaded into a deep one-dimensional (1D) optical lattice (OL), by means of analytical and numerical methods in the tight-binding limit. The patterns featuring multiple periodicities are generated by the modulational instability of the continuous-wave (CW) state, whose period is identical to that of the OL. The DPP and TPP emerge via phase transitions of the second and first kind, respectively. The emerging patterns may be stable provided that the dipole-dipole (DD) interactions are repulsive and sufficiently strong, in comparison with the local repulsive nonlinearity. Within the set of the considered states, the TPPs realize a minimum of the free energy. Accordingly, a vast stability region for the TPPs is found in the parameter space, while the DPP\ stability region is relatively narrow. The same mechanism may create stable density-wave patterns in other physical media featuring nonlocal interactions, such as arrayed optical waveguides with thermal nonlinearity.Comment: 7 pages, 4 figures, Phys. Rev. Lett., in pres

    The species composition of Antarctic phytoplankton interpreted in terms of Tilman's competition theory

    Get PDF
    An attempt was made, to test for the impact of resource competition on Antarctic marine phytoplankton. According to theory, species composition near competitive equilibrium should be determined by the ratios of limiting resources. Enrichment bioassays identified silicon and nitrogen as limiting nutrients for some of the most important phytoplankton species during early austral summer in the region near the Antarctic Peninsula. Together with the generally acknowledged limiting resource light, this gave three meaningful ratios of essential resources (Si:N, Si:light, N:light) and one ratio of substitutable resources (NO sub(3):NH sub(4)). Phytoplankton species assemblages were found to be well separated by the ratios of the essential resources and by mixing depth

    Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure

    Get PDF
    Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure.BackgroundParathyroid hormone and vitamin D have been shown to influence cardiac and vascular growth and function experimentally in human subjects with normal renal function. Because of the increased prevalence of hyperparathyroidism and altered vitamin D status in chronic renal failure, these alterations have been considered to contribute to the increased prevalence of cardiovascular disease and hypertension seen in this patient population.Methods and ResultsIn this article, we review experimental and clinical literature on the cardiovascular effects of parathyroid hormone and vitamin D and relate them to the development of cardiac and vascular dysfunction in uremia, such as: cardiomyopathy, myocardial hypertrophy, and fibrosis, as well as to myocardial ischemia; uremic glucose intolerance, dyslipidemia, and atherosclerosis; hypertension; and vascular and cardiac calcifications.ConclusionsThe hyperparathyroid state and altered vitamin D status found in uremia contribute to the cardiovascular pathology seen clinically in uremia and also to the excess mortality from cardiovascular causes found in this patient group. The therapeutic implications of these observations are also discussed

    Self-organized patterns of coexistence out of a predator-prey cellular automaton

    Full text link
    We present a stochastic approach to modeling the dynamics of coexistence of prey and predator populations. It is assumed that the space of coexistence is explicitly subdivided in a grid of cells. Each cell can be occupied by only one individual of each species or can be empty. The system evolves in time according to a probabilistic cellular automaton composed by a set of local rules which describe interactions between species individuals and mimic the process of birth, death and predation. By performing computational simulations, we found that, depending on the values of the parameters of the model, the following states can be reached: a prey absorbing state and active states of two types. In one of them both species coexist in a stationary regime with population densities constant in time. The other kind of active state is characterized by local coupled time oscillations of prey and predator populations. We focus on the self-organized structures arising from spatio-temporal dynamics of the coexistence. We identify distinct spatial patterns of prey and predators and verify that they are intimally connected to the time coexistence behavior of the species. The occurrence of a prey percolating cluster on the spatial patterns of the active states is also examined.Comment: 19 pages, 11 figure

    Blurred Lines Between Competition and Parasitism

    Get PDF
    Accurately describing the ecological relationships between species is more than mere semantics-doing so has profound practical and applied implications, not the least of which is that inaccurate descriptions can lead to fundamentally incorrect predicted outcomes of community composition and functioning. Accurate ecological classifications are particularly important in the context of global change, where species interactions can change rapidly following shifts in species composition. Here, we argue that many common ecological interactions-particularly competition and parasitism-can be easily confused and that we often lack empirical evidence for the full reciprocal interaction among species. To make our case and to propose a theoretical framework for addressing this problem, we use the interactions between lianas and trees, whose outcomes have myriad implications for the ecology and conservation of tropical forests (e.g., Schnitzer et al. 2015)
    corecore