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PERSPECTIVES IN RENAL MEDICINE

Parathyroid hormone, vitamin D, and cardiovascular disease in
chronic renal failure
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Parathyroid hormone, vitamin D, and cardiovascular disease are the result of decreased compliance (arteriosclerosis)
in chronic renal failure. and atherosclerosis, which favor hypertrophy and ische-

Background. Parathyroid hormone and vitamin D have mia, respectively [2]. Cardiac calcification is a frequentbeen shown to influence cardiac and vascular growth and func-
event that occurs mainly at the level of the coronarytion experimentally in human subjects with normal renal func-
arteries and heart valves, but that may also be seen astion. Because of the increased prevalence of hyperparathyroid-

ism and altered vitamin D status in chronic renal failure, these more diffuse deposits throughout the myocardium and
alterations have been considered to contribute to the increased as diffuse calcification of peripheral arteries. Although
prevalence of cardiovascular disease and hypertension seen in

the etiologies for altered myocardial structure and per-this patient population.
formance in renal failure are multiple, there is evidenceMethods and Results. In this article, we review experimental

and clinical literature on the cardiovascular effects of parathy- suggesting that disturbances of calcium and phosphorus
roid hormone and vitamin D and relate them to the develop- metabolism may play important roles in uremic cardio-
ment of cardiac and vascular dysfunction in uremia, such as: vascular disease. Such changes include elevated plasma
cardiomyopathy, myocardial hypertrophy, and fibrosis, as well

calcium and phosphate, increased circulating parathyroidas to myocardial ischemia; uremic glucose intolerance, dyslipi-
hormone (PTH) caused by secondary hyperparathyroid-demia, and atherosclerosis; hypertension; and vascular and car-

diac calcifications. ism, changes of local PTH-related protein (PTHrP) syn-
Conclusions. The hyperparathyroid state and altered vita- thesis and systemic metabolism, reduced production of

min D status found in uremia contribute to the cardiovascular active vitamin D metabolites, altered tissue responsive-
pathology seen clinically in uremia and also to the excess mor-

ness to these calciotrophic hormones, decreased calcium-tality from cardiovascular causes found in this patient group.
sensing receptor expression, and frequent administrationThe therapeutic implications of these observations are also

discussed. of pharmacological doses of calcium supplements and
active vitamin D derivatives. This review focuses on the
effects of PTH and vitamin D on cardiovascular structure

End-stage renal disease (ESRD) is associated with and function in chronic renal failure (Tables 1 and 2).
numerous changes in cardiac structure and function that
may account for the sustained high prevalence of mor-

CARDIAC FUNCTIONbidity and mortality from cardiovascular disease, particu-
Calcium ions are central to myocardial excitation-con-larly ischemic heart disease and heart failure [1]. Among

traction coupling and to cardiac contraction and relaxationthe structural changes that have been noted most fre-
quently are left ventricular hypertrophy (LVH), coronary cycles. Excitation-contraction coupling begins when sar-
artery disease, valvulopathies, and pericarditis. LVH is colemmal depolarization permits cellular calcium entry
characterized not only by an increased myocardial fiber via calcium channels. The release of calcium stored in
mass but also by interstitial fibrosis. Heart vessel changes the sarcoplasmic reticulum ensues, and this calcium re-

acts with troponin C, allowing actin and myosin to inter-
act, thereby initiating muscle contraction. Dissociation

Key words: uremia, hyperparathyroidism, PTH, blood pressure, end-
and resequestration of calcium by an energy-dependentstage renal disease, hypertension, myocardial ischemia, fibrosis.
pump produce relaxation. Intracellular calcium steady
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and the Na1-H1 exchanger [3]. 1999 by the International Society of Nephrology
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Table 2. Vitamin D effects on cardiovascular structure and functionTable 1. Effects of excess parathyroid hormone on cardiovascular
structure and function in chronic renal failure in chronic renal failure

A. Blood pressure A. Blood pressure
1. ↓ Blood pressure1. ↓ Blood pressure (acute)

2. ↑ Blood pressure (chronic) a. opposing PTH excess (?)
2. ↑ Blood pressurea. ↑ VSMC[Ca]i

b. ↑ VSM wall: lumen ratio ↑ a. ↑ VSM force generation
↑ b. ↑ VSMC [Ca21]i (vitamin D excess)B. Cardiac contractility

1. ↑ Contractile force and rate (acute) ↑ c. ↑ PTH production (decreased vitamin D concentration)
B. Cardiac introphy2. ↑ Contractile force (chronic)

a. ↓ Cardiomyocyte mitochondial energy production (chronic) 1. ↓ Introphy at low calcitriol concentration
2. ↑ Introphy with severe calcitriol depletionC. ↑ Cardiomycyte [Ca]i

1. ↓ Cellular Ca11 extrusion C. Left ventricular mass
1. ↑ Heart weight (vitamin D depletion)2. ↓ Sarcoplasmic reticulum Ca11 reuptake

D. ↑ Left ventricular mass, via 2. ↑ Myocardial collagen content (vitamin D depletion)
3. ↓ Endothelin-induced myocardial hypertrophy1. Cardiomyocyte hypertrophy

2. ↑ Interstitial fibrosis D. VSMC growth and proliferation
1. ↑ Cell proliferation (low calcitriol concentration)E. ↑ Atherosclerosis (chronic), via

1. Disturbed lipoprotein metabolism 2. ↓ Cell proliferation/↑ cell maturation (high calcitriol
concentration)2. ↑ Insulin resistance

3. ↑ VSMC [Ca]i E. Atherosclerosis via:
1. ↑ Apo A-1 and HDL-cholesterol4. ↑ Ca-Phos deposition in vessel wall (mediacalcosis)

5. Hypertension, 2. ↓ Insulin resistance (direct and indirection actions)
3. ↓ VLDL-triglycerides (direct and indirect actions)6. but: Inhibition of VSMC migration/proliferation by PTH

and PTHrP F. Atherosclerosis via:
1. ↑ Ca-Phos deposits in vessel wall (mediacalcosis)F. Myocardial calcification (?) (chronic)

G. Heart valve calcification (chronic) 2. ↑ Blood pressure (?)
G. ↑ Heart valve calcification (chronic vitamin D excess)Abbreviations are: VSMC, vascular smooth muscle cells; Ca-Phos, calcium-

phosphate; PTH, parathyroid hormone; PTHrP, parathyroid hormone-related Abbreviations are in Table 1 and: apoA-1, apolipoprotein A-1; HDL, high
protein. density lipoprotein; VLDL, very low density lipoprotein.

Parathyroid hormone and PTHrP have been shown suggesting yet another mechanism by which elevated
to increase acutely the force and frequency of contraction intracellular calcium and secondary hyperparathyroid-
of isolated, beating rat cardiomyocytes [4–6]. It has been ism might modulate myocardial growth and structure in
suggested that increased inotropy produced by PTH and uremia [14]. The previously noted experimental studies
PTHrP is due to effects on coronary flow and heart rate suggest that prolonged exposure to PTH is associated
and not to effects on contractile function [6]. However, with a greater intramyocardiocyte Ca11 concentration
changes induced by PTH occur in association with an and with adverse effects on myocardial metabolism,
increase of cell calcium and cAMP. Such effects have been structure, and function.
shown to require extracellular calcium, to be mimicked An increase of cytoplasmic Ca11 by excessive PTH
by a calcium ionophore, to be blocked by verapamil, and levels has also been demonstrated for uremic patients in
to be independent of a- or b-adrenergic activity, suggest- whom elevated platelet Ca11 was found to be correlated
ing mediation by enhanced calcium entry [5, 7, 8]. Bac- with plasma PTH concentration [15] and that could be
zynski et al and Bogin et al have also reported that in

corrected by PTX or calcitriol treatment [15]. Although
isolated myocardial mitochondria, PTH uncoupled oxida-

increased calcium entry is felt to be most important intive phosphorylation and inhibited myocardial energy
sustaining a high intramyocyte Ca11 concentration, re-production from long- and short-chain fatty acids, the
ductions in sarcolemmal Na1,K1-ATPase and Na1-Ca1

major substrates for cardiac metabolism [9–11]. These
exchange rates suggest that impaired calcium extrusionchanges reduced cellular ATP concentrations and im-
may contribute to altered cellular Ca1 homeostasis [5].paired myofibrillar activity of creatine kinase. Like the
In this regard, reduced Na1,K1-ATPase activity has longPTH effects on myocardial contractility, these responses
been observed under uremic conditions [16].were inhibited with verapamil [5, 12]. Verapamil has also

In rats with renal failure, the PTH/PTHrP receptor isbeen shown to prevent structural disorganization of car-
down-regulated in the kidney and in the heart [17, 18].diac myofibrils and their mitochondria observed in subto-
This may serve to desensitize tissues to PTH effects andtally nephrectomized rats [13]. Moreover, Qing et al have
thus minimize increases in cellular calcium, possibly asshown that in a uremic rat model, elevated cytosolic
part of a negative feedback mechanism [19]. Moreover,Ca11 concentrations in cardiomyocytes were associated
in a similar model, one may observe the same changeswith attenuated insulin-like growth factor-1–stimulated
in cardiomyocyte Ca1 concentration and mitochondrialprotein synthesis that could be reversed either by para-

thyroidectomy (PTX) or treatment with felodipine, function as in normal rats chronically exposed to PTH,
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and these changes are reversed with PTX or, as in the myocytes and on interstitial fibroblasts and indirect ef-
fects such as an increase in blood pressure via hypercalce-case of normals 1 PTH, with verapamil [5].

In humans with ESRD, as in primary hyperparathy- mia, anemia, and large and small vessel changes. Thus,
in cultured ventricular myocytes isolated from adult rats,roidism, the presence of secondary hyperparathyroidism,

or its markers, has also been associated with increased PTH induces trophic effects manifested by increased
protein synthesis and induction of creatine kinase [39].myocardial calcium content and impaired ventricular sys-

tolic and diastolic function [20–24]. However, despite an Recent reports also suggest a permissive role for PTH
in interstitial fibrosis [40]. In these studies, PTH causedinverse association between plasma PTH concentration

and left ventricular function, PTX is not consistently significant increases in the volume density of nonvascular
interstitial spaces without affecting the volume densityassociated with improvement in cardiac contractile func-

tion [21, 23, 25–27], suggesting that either PTH-induced of cardiac myocytes in rats with short-term uremia and in
PTX-uremic rats replaced with PTH. Increased cardiacchanges became irreversible in the case of long-standing

severe hyperparathyroidism, for example, by the induc- mass results, in part, from myocardial fibrosis, which has
long been observed in uremia. This interstitial fibrosistion of interstitial fibrosis, or that other factors contribut-

ing to myocardial dysfunction were more important than has been found to occur independently of hypertension
and may contribute significantly to diastolic dysfunctionPTH excess.

In this regard, receptors for 1,25(OH)2D3 have been and to the rate of arrhythmia seen in patients with ESRD
[33]. However, like the effects of PTH on cardiac func-identified in myocardial cells and may be of clinical rele-

vance. Recently, 26% of patients with congestive heart tions, the results of PTX have been inconsistent. In some
studies, PTX has been shown to produce small reductionsfailure, New York Heart Association (NYHA) class III

or IV, were found to have low serum concentrations of in cardiac mass [41, 42], but in others, myocardial hyper-
trophy has also been dissociated from secondary hyper-1,25(OH)2D3 [24], and the administration of vitamin D to

patients with renal failure has improved cardiac function parathyroidism in experimental uremia and in humans
with primary and secondary hyperparathyroidism [21,either indirectly by suppression of PTH synthesis and
23, 43, 44].secretion or directly via a vitamin D-dependent process

In ESRD, cardiac hypertrophy may also be related toin cardiac muscle [28]. The correction by calcitriol of
altered vitamin D status by effects on vascular smoothincreased cytoplasmic Ca11 due to excess PTH may play
muscle cell (VSMC) growth and blood pressure (dis-a role [15]. However, experimentally severe vitamin D
cussed later in this article). Calcitriol may modulate thedepletion can also stimulate contractile function and in-
cell cycle in a dose-dependent fashion. High concentra-crease rates of relaxation of perfused rat hearts, irrespec-
tions may slow cell proliferation and induce cell differen-tive of the serum Ca1 concentration [29, 30]. Thus, alter-
tiation. It has been observed that depending on its con-ations in vitamin D metabolism can contribute either
centration in vitro, calcitriol may be either stimulatorydirectly or indirectly to the regulation of cardiac muscle
(10212 m) or inhibitory (10210 to 1026 m) for cell prolifera-function. The balance between the degree of hyperpara-
tion, as shown in chondrocytes by Klaus et al [45]. Similarthyroidism, PTH/PTHrP receptor availability, and vita-
biphasic effects of calcitriol on cell proliferation weremin D status probably accounts for the variability in myo-
observed in keratinocytes by Pillai et al, with peak stimu-cardial function and responses to PTX seen in ESRD.
latory effects at 10212 to 10210 m and a decline at higher
concentrations [46]. In addition to its direct actions, vita-

MYOCARDIAL HYPERTROPHY AND FIBROSIS min D also modulates the effects of other growth factors.
Left ventricular hypertrophy is seen most frequently Thus, calcitriol has been found to antagonize endothelin-

in ESRD and, together with increased cardiomyocyte stimulated hypertrophy in neonatal rat cardiomyocytes
Ca11 content, contributes to systolic and diastolic dys- [47]. In addition, in this model, it may also suppress ANP
function, myocardial ischemia, and increased cardiac gene transcription by liganded vitamin D receptor and
mortality in ESRD [1, 31–33]. The mechanisms underly- thus retard myocardial hypertrophy because atrial natri-
ing this process are many, including hypertension, de- uretic peptide (ANP) gene expression is one of the earli-
creased aortic and large artery compliance, perhaps, in est and most reliable markers of cardiac hypertrophy
part, as a consequence of vessel wall calcification, ane- [48]. Conversely, its reduction in ESRD may allow tro-
mia, and possibly arteriovenous shunting [34, 35]. Both phic activities of endothelin and other peptide hormones
primary and secondary hyperparathyroidism and their to proceed unabated. In this regard, in recently reported
marker, elevated alkaline phosphatase, are also associ- studies in ESRD subjects, Park et al show that intrave-
ated with LVH and increased left ventricular mass index nous calcitriol treatment produced a significant regres-
(LVMI) [31, 36–38]. The mechanisms by which hyper- sion of LVMI and concomitant significant reductions in
parathyroidism could favor LVH are theoretically sev- plasma concentrations of PTH, angiotensin II (Ang II),

and ANP [49].eral and include direct trophic effects on myocardial
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Vitamin D3 deficiency in rats is associated with an excess PTH causes carbohydrate intolerance in uremia
by reducing pancreatic islet cell ATP, thereby raising in-increased heart weight independently of serum calcium.

However, because this type of cardiomegaly is associated tracellular calcium and impairing insulin secretion [60–63].
On the other hand, increased blood levels of insulin havewith an increase in extracellular space, it could also be

due to the concomitant secondary hyperparathyroidism been observed in primary hyperparathyroidism [64] and
in hemodialysis patients with secondary hyperparathy-leading to interstitial fibrosis [50]. Thus, in renal failure,

vitamin D deficiency and/or impaired action may not roidism [65]. In both circumstances, PTX could reduce
the observed increased blood levels of insulin. DeFronzoonly favor myocyte hyperplasia, but may also contribute

to myocardial fibrosis. et al, in an elegant series of studies in patients with
chronic renal disease, have also observed elevated plasma
insulin concentrations and reduced tissue sensitivity to

MYOCARDIAL ISCHEMIA AND
insulin [66]. This insulin resistance was found to occur

ATHEROSCLEROSIS
at the level of peripheral tissues and not as a result of

Numerous alterations in lipid metabolism have been altered hepatic glucose production. In this regard, vita-
noted in ESRD and have been proposed as causes for min D may also be important because 1,25(OH)2D3 has
the high prevalence of symptomatic and silent cardiac been shown to correct glucose intolerance, insulin resis-
ischemia seen in uremia [32]. Among the many uremia- tance, and hypertriglyceridemia in uremic patients on
associated factors contributing to atherosclerosis and is- hemodialysis, even in the absence of changes in plasma
chemia, PTH has been implicated, and a role for altered PTH [67].
vitamin D status is suggested. Both PTH infusion and Insulin has been shown to stimulate Na1-H1 exchange
hypocalcemic hyperparathyroidism in normal rats are and Na1,K1-ATPase in frog skeletal muscle, thereby
associated with increased serum concentrations of total hyperpolarizing and alkalinizing the cell and stimulating
cholesterol and triglycerides and a decrease of plasma glycolysis [68–70]. However, PTH and PTHrP have been
postheparin lipolytic activity. These effects could be pre- shown to reduce the activity of Na1-H1 exchange in
vented or reversed by PTX [51]. In experimental animals, opossum kidney cells [71, 72], an effect that could be
uremic patients and those with primary hyperparathy- reversed by the addition of 1,25(OH)2D3 [71]. Thus, it
roidism PTX produced long-lasting reductions in serum may be that by affecting cell pH, and thus its allosteric
triglyceride concentrations, whereas only short-lasting control of the enzyme, phosphofructokinase, a key regu-
reductions in total and high-density lipoprotein choles- lator of glycolysis, the interplay of vitamin D and PTH
terol were seen [52, 53]. Klin et al have also shown that may, in part, contribute to the degree of glucose toler-
in rats with chronic renal failure, there is a down-regula- ance and atherosclerosis.
tion of the mRNA of hepatic lipase and that hepatic Nonatherogenic cardiac ischemia is found often in
lipase production, activity, and release are impaired [54]. ESRD patients as well. Altered coronary vasodilator
These defects could be prevented by either PTX or vera- reserve caused by hypertension, LVH, and anemia con-
pamil. These studies suggest that hyperlipidemia in renal tribute, but altered small vessel structure and function
failure is dependent on excess PTH and that normal have also been suggested [32]. Amann et al have described
parathyroid function is necessary for normal lipid metab- decreased myocardial capillary density and increased
olism in renal failure [52, 53, 55]. Recent studies show a wall:lumen ratios in small intramyocardial arteries from
role for vitamin D in atherogenesis. One study suggested uremic rats; the latter changes were unrelated to blood
that vitamin D3 is positively correlated with concentra- pressure [73, 74]. Remarkably, they could be reversed
tions of apo A-I and high-density lipoprotein cholesterol, by PTX. PTH excess may also affect VSMC function by
and another showed an inverse association with very altering the production of endothelium-derived relaxing
low-density lipoprotein triglycerides, suggesting that vi- and contracting factors [75]. Moreover, because PTH/
tamin D3 may be cardioprotective [56, 57]. Moreover, PTHrP receptors are expressed in VSMCs, a chronic
vitamin D can also inhibit macrophage function and may excess of PTH might enhance vascular tone directly, for
thereby slow the atherogenic process [58]. If confirmed, instance, by an increase in cytoplasmic Ca11, in contrast
insufficient vitamin D intake, reduced synthesis of its to acute vasodilatory effects of PTH seen in animal studies.
active metabolites, and impaired action at target tissues Alternatively, altered PTH and PTHrP binding caused
in ESRD may all contribute to atherogenesis. by down-regulation of their receptor, as described in

Impaired carbohydrate tolerance, long known as an several tissues [17, 18], could oppose cellular Ca11 entry,
independent risk factor for atherosclerosis, is a common thus favoring decreased tone in resistance vessels [76].
finding in chronic renal failure, and associations between PTH and PTHrP may also be involved via indirect actions.
hyperparathyroid states and glucose intolerance have It has been suggested that PTHrP may act locally to op-
been described [59–63]. The mechanism underlying this pose vasoactive or growth-promoting effects of vasoactive

peptides such as Ang II, which stimulate the inductionassociation is controversial. Several studies suggest that
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of the PTH/PTHrP receptor. In this regard, it has been that lowered PTH concentration through increased pro-
duction of 1,25(OH)2D3 [94].shown that increased hydrostatic pressure is associated

with increased PTHrP receptor gene expression, suggest- The mechanism of PTH-induced hypertension is
thought to be through increasing intracellular Ca11. Asing that the receptor is partly under the control of mechan-

ical forces [77]. It has been proposed that up-regulation noted earlier in this article, PTH effects on vascular
endothelial function and on growth may also contributeof the PTHrP receptor may exert at least some of its

vasodilatory effects through stimulating interleukin-1b– to increased vascular tone and stiffness [4, 6, 39, 74, 75,
77, 78, 95–98]. In this regard and contrary to a view sug-induced nitric oxide synthesis [78]. Thus, down-regula-

tion of this receptor in uremic hearts may enhance the gesting an increased rate of sodium-hydrogen exchange
activity in essential hypertension [99, 100], the fact thattrophic and vasoconstrictor actions of Ang II and other

peptide hormones [19, 76]. PTH can inhibit sodium-hydrogen exchange may also
contribute to its hypertensive effect because selective inhi-A role for vitamin D is uncertain. In vitro studies have

shown VSMC proliferation to be stimulated by vitamin bition of Na1-H1 exchange has been shown to increase
blood pressure in the spontaneously hypertensive rat [101].D [79, 80], but another found that vitamin D3 suppressed

VSMC [3H]-thymidine incorporation and growth stimu- Short- and long-term administration of calcitriol has
also been shown to have vasoconstrictive and blood pres-lated by epidermal growth factor [58]. Thus, it may be

that depending on plasma calcitriol concentration in re- sure-elevating properties, and is thought to mediate their
effects through increasing intracellular Ca11 and throughnal failure, VSMC proliferation may be enhanced or

depressed, leading to increased wall:lumen ratios and to altering adrenergic responsiveness [102–107]. Thus, one
might expect that in renal failure, reduced calcitriol con-myocardial hypertrophy. Taken together, available data

suggest that hyperparathyroidism and altered vitamin D centrations would be associated with lower blood pres-
sures. However, as noted earlier in this article, in uremia,status contribute significantly to the increased suscepti-

bility for myocardial ischemia in chronic renal failure. lower plasma calcitriol concentrations may actually in-
crease blood pressure indirectly through elevated PTH
secretion, whereas high concentrations may do the oppo-HYPERTENSION
site. Thus, the action of calcitriol appears to depend heav-

Parathyroid hormone and vitamin D have both been ily on the concomitant parathyroid status. In addition,
implicated in blood pressure control. Short-term incuba- as noted earlier in this article, vitamin D3 deficiency in
tion of isolated VSMCs and intact arterioles with PTH uremia may facilitate atherogenesis, myocyte prolifera-
produced vascular relaxation [4, 19, 76]. In whole ani- tion, and collagen production, thus causing vascular stiff-
mals, acute exposure to PTH produces hypotension, but ness and reduced compliance. In this regard, recent studies
the effect may be species specific because short-term in humans with essential hypertension [57, 108, 109] or
infusion of 1,34-PTH in healthy normal human subjects with chronic renal failure [94] and in Dahl salt-sensitive
either had no effect on blood pressure or, depending on rats [110] have shown inverse associations between blood
metabolic state, increased it [81]. It has been well noted pressure and concentrations of 1,25(OH)2D3, 25(OH)D3,
in animal studies, however, that chronic exposure to PTH or both.
is associated with elevated blood pressure. Studies in
hypertensive animals, particularly in the spontaneously

VASCULAR AND CARDIAC CALCIFICATIONhypertensive rat of the Okamoto-Aoki strain, have dem-
onstrated increased PTH secretion, increased parathyroid Soft tissue calcification occurs commonly in patients

with ESRD. Numerous studies have shown increasedgland mass, and reduced plasma calcitriol concentration
together with a decrease in intestinal calcium absorption myocardial calcium content in patients and animals with

uremia [20, 111]. Widespread calcification of the cardio-and renal calcium reabsorption leading to hypercalciuria
[82, 83]. In such studies, calcium deprivation raised blood vascular system has also been reported, including the

myocardium, mitral and aortic valves, the cardiac con-pressure and PTX, and calcium supplementation reduced
it [84–88]. In some forms of human hypertension, in- duction system, and large and small arteries localized

either as calcified plaques at the endothelial site or ascreased PTH has also been found, although concentra-
tions of 1,25(OH)2D3 have been variable [89–91]. As in diffuse calcium-phosphate deposits in the media (“me-

diacalcosis”; Fig. 1A) [96, 112–117]. Such calcificationanimal studies, calcium supplementation in humans has
been shown to lower blood pressure [92]. In renal failure, can contribute to mitral and aortic insufficiency, myocar-

dial ischemia, systolic and diastolic cardiac dysfunction,maneuvers that reduce PTH secretion may also lower
blood pressure. Thus, PTX in dialysis patients has pro- significant and sometimes fatal arrhythmia, and symp-

tomatic peripheral vascular disease, including gangrene.duced sustained reductions in blood pressure [93]. More-
over, blood pressure could be decreased in dialysis pa- Valvular calcification and attendant dysfunction may

also contribute to stroke, pulmonary hypertension, andtients by exposure to ultraviolet light, a manipulation
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Fig. 1. Radiograph of a single digit and calcified digital artery of a 36-year-old woman with ESRD from congenital uropathy (a) before subtotal
PTX and (b) 11 months later when calcification had completely disappeared.

dialysis-associated hypotension. Using two-dimensional seen following PTX in uremic patients (Fig. 1B). How-
ever, Rostand et al were unable to find an associationechocardiography, we have found mitral valve calcifica-

tion in 46.3% of hemodialysis patients and that such between a PTH concentration and myocardial calcium
content using either univariate or multiple variable anal-calcification was associated with left ventricular dysfunc-

tion, clinical heart failure, and infective endocarditis more ysis, but they did show that there was a strong association
with calcium-phosphorus product and with PTX [20].often than in those in whom it was absent (Table 3).

Our observed prevalence of mitral valve calcification These data suggest that hyperparathyroidism severe
enough to require PTX contributed to increased myocar-(46.3%) was somewhat less than the 59% reported by

Braun et al, who measured cardiac calcification in 49 dial calcium content. Unfortunately, when a group of 10
patients was studied prospectively, PTX, though low-hemodialysis patients using more sensitive electron

beam computed tomography [118]. ering plasma PTH and alkaline phosphatase activity, had
no effect on myocardial calcium content [21], which isMechanisms associated with myocardial and vascular

accumulation of calcium in uremia have been discussed in keeping with similar findings on the effects of PTX on
myocardial calcifications in primary hyperparathyroidismearlier in this article. Age and hypertension have been

implicated in the process, as has secondary hyperpara- [43]. These data suggest that once accumulated in vascu-
lar and cardiac tissues, calcium is difficult to displace.thyroidism [115, 118]. However, the role for secondary

hyperparathyroidism is not clear. In animal studies, PTX An alternative explanation would be that the induc-
tion of low-turnover bone disease by excessive reductioncould prevent the development of vascular calcification,

suggesting that secondary hyperparathyroidism plays a of plasma PTH favors the deposition of calcium phos-
phate in soft tissues, possibly the result of decreased bonerole in the calcific arteriopathy seen in uremia [116].

Regression of vascular calcification may, on occasion, be buffer capacity in response to calcium and phosphorus
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Table 3. Mitral valve calcification in ESRD: Frequency, decreasing the risk of calcifying the myocardium, mitral
distribution, and effects in 140 dialysis patients assessed

valve, conducting system, and small resistance arteries,by 2-dimensional echocardiography
thereby reducing the risk for myocardial ischemia, heart

Mitral valve calcification failure, arrhythmia, and death.
Present Absent Moreover, efforts should be made to reduce PTH se-

Number 67 (47.9) 73 (52.1) cretion through strict phosphorus control and oral sup-
Male 26 (38.8) 32 (43.8) plementation with calcium or vitamin D derivatives into
Female 41 (61.2) 41 (56.2)

a range that is normal for a uremic patient, that is, withAge years 54.2611.8 49 613.1
Mitral valve dysfunction 31 (46.3) 19 (26) intact plasma PTH concentrations two to three times the

Insufficency 30 19 upper limit of normal. Recently, it has been observed
Stenosis 1 0

that the elevated Ca 3 PO4 product (.72) and serumTricuspid valve insufficiency 24 (35.8) 15 (20.5)
Infective endocarditis 2 0 phosphorus concentration (.6.5 mg/dl) significantly in-
Mitral valve surgery 4 0 creased the risk of mortality in ESRD, most probably
LV ejection fraction,

as a result of cardiovascular complications [124]. Thus,average (%) 48.3614.6 [61] 49.2 614.5 [64]
EF ,50 percent 25 (40.9) 20 (31.3) these interventions, together with rigorous control of
EF ,40 percent 21 (34.4) 14 (21.8) the Ca 3 PO4 product, may help to minimize cardiac

Heart failure, clinical 19 (28.3) 10 (13.7)
morbidity and mortality in renal failure.

Values are mean 6 sd or actual counts. Numbers in parentheses are percent.
Bracketed numbers are sample size if incomplete.
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