214 research outputs found

    Local Statistics of Realizable Vertex Models

    Full text link
    We study planar "vertex" models, which are probability measures on edge subsets of a planar graph, satisfying certain constraints at each vertex, examples including dimer model, and 1-2 model, which we will define. We express the local statistics of a large class of vertex models on a finite hexagonal lattice as a linear combination of the local statistics of dimers on the corresponding Fisher graph, with the help of a generalized holographic algorithm. Using an n×nn\times n torus to approximate the periodic infinite graph, we give an explicit integral formula for the free energy and local statistics for configurations of the vertex model on an infinite bi-periodic graph. As an example, we simulate the 1-2 model by the technique of Glauber dynamics

    Quadri-tilings of the plane

    Full text link
    We introduce {\em quadri-tilings} and show that they are in bijection with dimer models on a {\em family} of graphs {R∗}\{R^*\} arising from rhombus tilings. Using two height functions, we interpret a sub-family of all quadri-tilings, called {\em triangular quadri-tilings}, as an interface model in dimension 2+2. Assigning "critical" weights to edges of R∗R^*, we prove an explicit expression, only depending on the local geometry of the graph R∗R^*, for the minimal free energy per fundamental domain Gibbs measure; this solves a conjecture of \cite{Kenyon1}. We also show that when edges of R∗R^* are asymptotically far apart, the probability of their occurrence only depends on this set of edges. Finally, we give an expression for a Gibbs measure on the set of {\em all} triangular quadri-tilings whose marginals are the above Gibbs measures, and conjecture it to be that of minimal free energy per fundamental domain.Comment: Revised version, minor changes. 30 pages, 13 figure

    Ising model on nonorientable surfaces: Exact solution for the Moebius strip and the Klein bottle

    Full text link
    Closed-form expressions are obtained for the partition function of the Ising model on an M x N simple-quartic lattice embedded on a Moebius strip and a Klein bottle for finite M and N. The finite-size effects at criticality are analyzed and compared with those under cylindrical and toroidal boundary conditions. Our analysis confirms that the central charge is c=1/2.Comment: 8 pages, 3 eps figure

    The critical Ising model via Kac-Ward matrices

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on any finite graph G from the determinant of 2^{2g} matrices, where g is the genus of a surface in which G embeds. We show that in the case of isoradially embedded graphs with critical weights, these determinants have quite remarkable properties. First of all, they satisfy some generalized Kramers-Wannier duality: there is an explicit equality relating the determinants associated to a graph and to its dual graph. Also, they are proportional to the determinants of the discrete critical Laplacians on the graph G, exactly when the genus g is zero or one. Finally, they share several formal properties with the Ray-Singer \bar\partial-torsions of the Riemann surface in which G embeds.Comment: 30 pages, 10 figures; added section 4.4 in version

    Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms

    Get PDF
    BACKGROUND: Identifying syntenic regions, i.e., blocks of genes or other markers with evolutionary conserved order, and quantifying evolutionary relatedness between genomes in terms of chromosomal rearrangements is one of the central goals in comparative genomics. However, the analysis of synteny and the resulting assessment of genome rearrangements are sensitive to the choice of a number of arbitrary parameters that affect the detection of synteny blocks. In particular, the choice of a set of markers and the effect of different aggregation strategies, which enable coarse graining of synteny blocks and exclusion of micro-rearrangements, need to be assessed. Therefore, existing tools and resources that facilitate identification, visualization and analysis of synteny need to be further improved to provide a flexible platform for such analysis, especially in the context of multiple genomes. RESULTS: We present a new tool, Cinteny, for fast identification and analysis of synteny with different sets of markers and various levels of coarse graining of syntenic blocks. Using Hannenhalli-Pevzner approach and its extensions, Cinteny also enables interactive determination of evolutionary relationships between genomes in terms of the number of rearrangements (the reversal distance). In particular, Cinteny provides: i) integration of synteny browsing with assessment of evolutionary distances for multiple genomes; ii) flexibility to adjust the parameters and re-compute the results on-the-fly; iii) ability to work with user provided data, such as orthologous genes, sequence tags or other conserved markers. In addition, Cinteny provides many annotated mammalian, invertebrate and fungal genomes that are pre-loaded and available for analysis at . CONCLUSION: Cinteny allows one to automatically compare multiple genomes and perform sensitivity analysis for synteny block detection and for the subsequent computation of reversal distances. Cinteny can also be used to interactively browse syntenic blocks conserved in multiple genomes, to facilitate genome annotation and validation of assemblies for newly sequenced genomes, and to construct and assess phylogenomic trees

    An asymmetric approach to preserve common intervals while sorting by reversals

    Get PDF
    Dias Vieira Braga M, Gautier C, Sagot M-F. An asymmetric approach to preserve common intervals while sorting by reversals. Algorithms for Molecular Biology. 2009;4(1):16.Background: The reversal distance and optimal sequences of reversals to transform a genome into another are useful tools to analyse evolutionary scenarios. However, the number of sequences is huge and some additional criteria should be used to obtain a more accurate analysis. One strategy is searching for sequences that respect constraints, such as the common intervals (clusters of co-localised genes). Another approach is to explore the whole space of sorting sequences, eventually grouping them into classes of equivalence. Recently both strategies started to be put together, to restrain the space to the sequences that respect constraints. In particular an algorithm has been proposed to list classes whose sorting sequences do not break the common intervals detected between the two inital genomes A and B. This approach may reduce the space of sequences and is symmetric (the result of the analysis sorting A into B can be obtained from the analysis sorting B into A). Results: We propose an alternative approach to restrain the space of sorting sequences, using progressive instead of initial detection of common intervals (the list of common intervals is updated after applying each reversal). This may reduce the space of sequences even more, but is shown to be asymmetric. Conclusions: We suggest that our method may be more realistic when the relation ancestor-descendant between the analysed genomes is clear and we apply it to do a better characterisation of the evolutionary scenario of the bacterium Rickettsia felis with respect to one of its ancestors

    A framework for orthology assignment from gene rearrangement data

    Get PDF
    Abstract. Gene rearrangements have successfully been used in phylogenetic reconstruction and comparative genomics, but usually under the assumption that all genomes have the same gene content and that no gene is duplicated. While these assumptions allow one to work with organellar genomes, they are too restrictive when comparing nuclear genomes. The main challenge is how to deal with gene families, specifically, how to identify orthologs. While searching for orthologies is a common task in computational biology, it is usually done using sequence data. We approach that problem using gene rearrangement data, provide an optimization framework in which to phrase the problem, and present some preliminary theoretical results.

    Multichromosomal median and halving problems under different genomic distances

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome median and genome halving are combinatorial optimization problems that aim at reconstructing ancestral genomes as well as the evolutionary events leading from the ancestor to extant species. Exploring complexity issues is a first step towards devising efficient algorithms. The complexity of the median problem for unichromosomal genomes (permutations) has been settled for both the breakpoint distance and the reversal distance. Although the multichromosomal case has often been assumed to be a simple generalization of the unichromosomal case, it is also a relaxation so that complexity in this context does not follow from existing results, and is open for all distances.</p> <p>Results</p> <p>We settle here the complexity of several genome median and halving problems, including a surprising polynomial result for the breakpoint median and guided halving problems in genomes with circular and linear chromosomes, showing that the multichromosomal problem is actually easier than the unichromosomal problem. Still other variants of these problems are NP-complete, including the DCJ double distance problem, previously mentioned as an open question. We list the remaining open problems.</p> <p>Conclusion</p> <p>This theoretical study clears up a wide swathe of the algorithmical study of genome rearrangements with multiple multichromosomal genomes.</p

    Screening synteny blocks in pairwise genome comparisons through integer programming

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events.</p> <p>Results</p> <p>We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota-based screening can eliminate ambiguous synteny blocks and focus on specific genomic evolutionary events, like the divergence of lineages (in cross-species comparisons) and the most recent WGD (in self comparisons).</p> <p>Conclusions</p> <p>The QUOTA-ALIGN algorithm screens a set of synteny blocks to retain only those compatible with a user specified ploidy relationship between two genomes. These blocks, in turn, may be used for additional downstream analyses such as identifying true orthologous regions in interspecific comparisons. There are two major contributions of QUOTA-ALIGN: 1) reducing the block screening task to a BIP problem, which is novel; 2) providing an efficient software pipeline starting from all-against-all BLAST to the screened synteny blocks with dot plot visualizations. Python codes and full documentations are publicly available <url>http://github.com/tanghaibao/quota-alignment</url>. QUOTA-ALIGN program is also integrated as a major component in SynMap <url>http://genomevolution.com/CoGe/SynMap.pl</url>, offering easier access to thousands of genomes for non-programmers.</p
    • 

    corecore