70 research outputs found

    Sports brands communication in the "Covid" age: strategies, representations, identity and consumption

    Get PDF
    The paper investigates the role of brand communication during the first period of pandemic age, in which Sport and PA were also called to redesign behaviours, cultural and consumer practices as well as to answer new questions of meaning. The new spirit of the time we are living in, is characterized by the domination of the medical-scientific language, and by a strong contraction of the economy in which trends and fashions appear scaled down and subordinate to new goals of well-being. The pandemic has increased the digitized experiences of sports practices, bringing out more and more aspects of individualism, narcissism, which are combined with a continuous search for well-being, health, beauty, fashion. Sports brands therefore appear as social spaces to observe the changes in sports communication and its consumption practices. The paper analysis how – during the first lockdown – the story-telling of sports brands has changed values, going to new socially responsible commitments in terms of global health and security. Following the multidimensional theory of communication, some emblematic cases of global sports brands are investigated through qualitative methods, in order to highlight the emergence of new issues: representations, identities, rules and consumption as innovative aspects of sports cultural production. The aim is to show sport and PA as a sort of pandemic “domestication” of the social reality we are experiencing

    AdS Phase Transitions at finite \kappa

    Full text link
    We investigate the effect of adding a Chern-Simons term coupled to an axion field to SU(2) Einstein-Yang-Mills in a fixed AdS4AdS_4/Schwarzschild background. We show that, when the axion has no potential, there is a phase transition between a Reissner-Nordstrom black-hole and one with a non-abelian condensate as per the vanishing Chern-Simons case. Furthermore, by giving the axion field a mass, one observes a phase transition between a Reissner-Nordstrom black-hole with axion hair to a "superconducting" phase which also has a non-trivial axion profile. We are able to perform a preliminary analysis for this interesting case and observe that we can shift the critical temperature at which the phase transition occurs and observe interesting features of the order parameter scaling form.Comment: Version Published in JHE

    Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity

    Full text link
    The holographic charged fluid with anomalous current in Einstein-Maxwell gravity has been generalized from the infinite boundary to the finite cutoff surface by using the gravity/fluid correspondence. After perturbing the boosted Reissner-Nordstrom (RN)-AdS black brane solution of the Einstein-Maxwell gravity with the Chern-Simons term, we obtain the first order perturbative gravitational and Maxwell solutions, and calculate the stress tensor and charged current of the dual fluid at finite cutoff surfaces which contains undetermined parameters after demanding regularity condition at the future horizon. We adopt the Dirichlet boundary condition and impose the Landau frame to fix these parameters, finally obtain the dependence of transport coefficients in the dual stress tensor and charged current on the arbitrary radical cutoff rcr_c. We find that the dual fluid is not conformal, but it has vanishing bulk viscosity, and the shear viscosity to entropy density ratio is universally 1/4Ď€1/4\pi. Other transport coefficients of the dual current turns out to be cutoff-dependent. In particular, the chiral vortical conductivity expressed in terms of thermodynamic quantities takes the same form as that of the dual fluid at the asymptotic AdS boundary, and the chiral magnetic conductivity receives a cutoff-dependent correction which vanishes at the infinite boundary.Comment: 19 pages, v2: references added, v3: typos corrected, v5: typos corrected, version accepted for publication in JHE

    Paratransgenesis to control malaria vectors: a semi-field pilot study

    Get PDF
    BACKGROUND: Malaria still remains a serious health burden in developing countries, causing more than 1 million deaths annually. Given the lack of an effective vaccine against its major etiological agent, Plasmodium falciparum, and the growing resistance of this parasite to the currently available drugs repertoire and of Anopheles mosquitoes to insecticides, the development of innovative control measures is an imperative to reduce malaria transmission. Paratransgenesis, the modification of symbiotic organisms to deliver anti-pathogen effector molecules, represents a novel strategy against Plasmodium development in mosquito vectors, showing the potential to reduce parasite development. However, the field application of laboratory-based evidence of paratransgenesis imposes the use of more realistic confined semi-field environments. METHODS: Large cages were used to evaluate the ability of bacteria of the genus Asaia expressing green fluorescent protein (Asaia (gfp)), to diffuse in Anopheles stephensi and Anopheles gambiae target mosquito populations. Asaia (gfp) was introduced in large cages through the release of paratransgenic males or by sugar feeding stations. Recombinant bacteria transmission was directly detected by fluorescent microscopy, and further assessed by molecular analysis. RESULTS: Here we show the first known trial in semi-field condition on paratransgenic anophelines. Modified bacteria were able to spread at high rate in different populations of An. stephensi and An. gambiae, dominant malaria vectors, exploring horizontal ways and successfully colonising mosquito midguts. Moreover, in An. gambiae, vertical and trans-stadial diffusion mechanisms were demonstrated. CONCLUSIONS: Our results demonstrate the considerable ability of modified Asaia to colonise different populations of malaria vectors, including pecies where its association is not primary, in large environments. The data support the potential to employ transgenic Asaia as a tool for malaria control, disclosing promising perspective for its field application with suitable effector molecules

    Non-conformal Hydrodynamics in Einstein-dilaton Theory

    Full text link
    In the Einestein-dilaton theory with a Liouville potential parameterized by η\eta, we find a Schwarzschild-type black hole solution. This black hole solution, whose asymptotic geometry is described by the warped metric, is thermodynamically stable only for 0≤η<20 \le \eta < 2. Applying the gauge/gravity duality, we find that the dual gauge theory represents a non-conformal thermal system with the equation of state depending on η\eta. After turning on the bulk vector fluctuations with and without a dilaton coupling, we calculate the charge diffusion constant, which indicates that the life time of the quasi normal mode decreases with η\eta. Interestingly, the vector fluctuation with the dilaton coupling shows that the DC conductivity increases with temperature, a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE

    Maxwell-Chern-Simons Vortices and Holographic Superconductors

    Full text link
    We investigate probe limit vortex solutions of a charged scalar field in Einstein-Maxwell theory in 3+1 dimensions, for an asymptotically AdS Schwarzschild black hole metric with the addition of an axionic coupling to the Maxwell field. We show that the inclusion of such a term, together with a suitable potential for the axion field, can induce an effective Chern-Simons term on the 2+1 dimensional boundary. We obtain numerical solutions of the equations of motion and find Maxwell-Chern-Simons like magnetic vortex configurations, where the magnetic field profile varies with the size of the effective Chern-Simons coupling. The axion field has a non-trivial profile inside the AdS bulk but does not condense at spatial infinity.Comment: 17 pages, 5 figures, version accepted for publication in JHE

    Optimal preparation of high-entropy boride-silicon carbide ceramics

    Get PDF
    High-entropy boride-silicon carbide (HEB-SiC) ceramics were fabricated using boride-based powders prepared from borothermal and boro/carbothermal reduction methods. The effects of processing routes (borothermal reduction and boro/carbothermal reduction) on the HEB powders were examined. HEB-SiC ceramics with > 98% theoretical density were prepared by spark plasma sintering at 2000 °C. It was demonstrated that the addition of SiC led to slight coarsening of the microstructure. The HEB-SiC ceramics prepared from boro/carbothermal reduction powders showed a fine-grained microstructure and higher Vickers’ hardness but lower fracture toughness value as compared with the same composition prepared from borothermal reduction powders. These results indicated that the selection of the powder processing method and the addition of SiC phase could contribute to the optimal preparation of high-entropy boride-based ceramics

    Super-Higgs in Superspace

    No full text
    We determine the effective gravitational couplings in superspace whose components reproduce the supergravity Higgs effect for the constrained Goldstino multiplet. It reproduces the known Gravitino sector whilst constraining the off-shell completion. We show that these components arise by computing the effective action. This may be useful for phenomenological studies and model building: We give an example of its application to multiple Goldstini.Comment: 17 pages. Version 2: Typos reduced, comments added and section 5 clarifie
    • …
    corecore