81 research outputs found

    Generalized Courant–Snyder theory and Kapchinskij–Vladimirskij distribution for high-intensity beams in a coupled transverse focusing lattice

    Full text link
    The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation

    Imprints of the Quantum World in Classical Mechanics

    Full text link
    The imprints left by quantum mechanics in classical (Hamiltonian) mechanics are much more numerous than is usually believed. We show Using no physical hypotheses) that the Schroedinger equation for a nonrelativistic system of spinless particles is a classical equation which is equivalent to Hamilton's equations.Comment: Paper submitted to Foundations of Physic

    Families of Canonical Transformations by Hamilton-Jacobi-Poincar\'e equation. Application to Rotational and Orbital Motion

    Full text link
    The Hamilton-Jacobi equation in the sense of Poincar\'e, i.e. formulated in the extended phase space and including regularization, is revisited building canonical transformations with the purpose of Hamiltonian reduction. We illustrate our approach dealing with orbital and attitude dynamics. Based on the use of Whittaker and Andoyer symplectic charts, for which all but one coordinates are cyclic in the Hamilton-Jacobi equation, we provide whole families of canonical transformations, among which one recognizes the familiar ones used in orbital and attitude dynamics. In addition, new canonical transformations are demonstrated.Comment: 21 page

    A Translation of the T. Levi-Civita paper: Interpretazione Gruppale degli Integrali di un Sistema Canonico Rend. Acc. Lincei, s. 3^a, vol. VII, 2^o sem. 1899, pp. 235--238

    Full text link
    In this paper we provide a translation of a paper by T. Levi-Civita, published in 1899, about the correspondence between symmetries and conservation laws for Hamilton's equations. We discuss the results of this paper and their relationship with the more general classical results by E. Noether.Comment: 12 page

    Conditional Symmetries and the Canonical Quantization of Constrained Minisuperspace Actions: the Schwarzschild case

    Full text link
    A conditional symmetry is defined, in the phase-space of a quadratic in velocities constrained action, as a simultaneous conformal symmetry of the supermetric and the superpotential. It is proven that such a symmetry corresponds to a variational (Noether) symmetry.The use of these symmetries as quantum conditions on the wave-function entails a kind of selection rule. As an example, the minisuperspace model ensuing from a reduction of the Einstein - Hilbert action by considering static, spherically symmetric configurations and r as the independent dynamical variable, is canonically quantized. The conditional symmetries of this reduced action are used as supplementary conditions on the wave function. Their integrability conditions dictate, at a first stage, that only one of the three existing symmetries can be consistently imposed. At a second stage one is led to the unique Casimir invariant, which is the product of the remaining two, as the only possible second condition on Ψ\Psi. The uniqueness of the dynamical evolution implies the need to identify this quadratic integral of motion to the reparametrisation generator. This can be achieved by fixing a suitable parametrization of the r-lapse function, exploiting the freedom to arbitrarily rescale it. In this particular parametrization the measure is chosen to be the determinant of the supermetric. The solutions to the combined Wheeler - DeWitt and linear conditional symmetry equations are found and seen to depend on the product of the two "scale factors"Comment: 20 pages, LaTeX2e source file, no figure

    Polymers and biopolymers at interfaces

    Get PDF
    This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application

    Conservation of energy-momentum of matter as the basis for the gauge theory of gravitation

    Full text link
    According to Yang \& Mills (1954), a {\it conserved} current and a related rigid (`global') symmetry lie at the foundations of gauge theory. When the rigid symmetry is extended to a {\it local} one, a so-called gauge symmetry, a new interaction emerges as gauge potential AA; its field strength is FcurlAF\sim {\rm curl} A. In gravity, the conservation of the energy-momentum current of matter and the rigid translation symmetry in the Minkowski space of special relativity lie at the foundations of a gravitational gauge theory. If the translation invariance is made local, a gravitational potential ϑ\vartheta arises together with its field strength TcurlϑT\sim {\rm curl}\,\vartheta. Thereby the Minkowski space deforms into a Weitzenb\"ock space with nonvanishing torsion TT but vanishing curvature. The corresponding theory is reviewed and its equivalence to general relativity pointed out. Since translations form a subgroup of the Poincar\'e group, the group of motion of special relativity, one ought to straightforwardly extend the gauging of the translations to the gauging of full Poincar\'e group thereby also including the conservation law of the {\it angular momentum} current. The emerging Poincar\'e gauge (theory of) gravity, starting from the viable Einstein-Cartan theory of 1961, will be shortly reviewed and its prospects for further developments assessed.Comment: 46 pages, 4 figures, minor corrections, references added, contribution to "One Hundred Years of Gauge Theory" edited by S. De Bianchi and C. Kiefe

    Chromophores in Photomorphogenesis

    Get PDF

    Atmospheric aerosols in Rome, Italy: sources, dynamics and spatial variations during two seasons

    No full text
    Investigations on atmospheric aerosols and their sources were carried out in October/November 2013 and May/June 2014 consecutively in a suburban area of Rome (Tor Vergata) and in central Rome (near St Peter's Basilica). During both years a Saharan dust advection event temporarily increased PM10 concentrations at ground level by about 12-17 mu g m(-3). Generally, in October/November the ambient aerosol was more strongly influenced by primary emissions, whereas higher relative contributions of secondary particles (sulfate, aged organic aerosol) were found in May/June. Absolute concentrations of anthropogenic emission tracers (e.g. NOx, CO2, particulate polycyclic aromatic hydrocarbons, traffic-related organic aerosol) were generally higher at the urban location. Positive matrix factorization was applied to the PM1 organic aerosol (OA) fraction of aerosol mass spectrometer (HR-ToF-AMS) data to identify different sources of primary OA (POA): traffic, cooking, biomass burning and (local) cigarette smoking. While biomass burning OA was only found at the suburban site, where it accounted for the major fraction of POA (18-24% of total OA), traffic and cooking were more dominant sources at the urban site. A particle type associated with cigarette smoke emissions, which is associated with a potential characteristic marker peak (m/z 84, C5H10N+, a nicotine fragment) in the mass spectrum, was only found in central Rome, where it was emitted in close vicinity to the measurement location. Regarding secondary OA, in October/November, only a very aged, regionally advected oxygenated OA was found, which contributed 42-53% to the total OA. In May/June total oxygenated OA accounted for 56-76% of the OA. Here a fraction (18-26% of total OA) of a fresher, less oxygenated OA of more local origin was also observed. New particle formation events were identified from measured particle number concentrations and size distributions in May/June 2014 at both sites. While they were observed every day at the urban location, at the suburban location they were only found under favourable meteorological conditions, but were independent of advection of the Rome emission plume. Particles from sources in the metropolitan area of Rome and particles advected from outside Rome contributed 42-70 and 30-58% to the total measured PM1, respectively. Apart from the general aerosol characteristics, in this study the properties (e.g. emission strength) and dynamics (e.g. temporal behaviour) of each identified aerosol type is investigated in detail to provide a better understanding of the observed seasonal and spatial differences
    corecore