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7 Chromophores in Photomorphogenesis 

W . R Ü D I G E R and H . SCHEER 

1 Introduction 

Chromophores in photomorphogenesis are those parts of the photoreceptor 
molecules which absorb the light responsible for the physiological response. 
Absorption spectra of the chromophores should therefore principally corre­
spond to the action spectra of photomorphoses. However, the absorption of 
isolated chromophores can strongly deviate from physiological action spectra 
due to several reasons (e.g., perturbation by the environment, dichroitic effects 
of ordered structures, shading by bulk pigments). Therefore, we restrict our 
discussion here to those chromophores on which at least some complementary 
information is available. 

The chromophore of phytochrome has previously been treated in several 
books and reviews ( M I T R A K O S and SHROPSHIRE 1972 , S M I T H 1975 , B R I G G S and 
R I C E 1972 , S M I T H and K F N D R I C K 1976 , K E N D R I C K and S P R U I T 1977 , P R A T T 
1978 , R Ü D I G E R 1980) . A comprehensive bibliography on the literature prior 
to 1975 is available ( C O R R E L L et al. 1977) . Phycochrome and adaptochrome 
chromophores have been discussed by B O G O R A D (1975) and B J Ö R N and B J Ö R N 
(1980) . For a recent survey on cryptochrome (the blue light receptor) the reader 
is referred to the book edited by S E N G E R (1980) . 

2 Phytochrome Chromophores 

2.1 P r Structure 

Because of spectral similarity of P r and P C 1 , a bile pigment structure was sug­
gested for the phytochrome chromophore at an early stage of phytochrome 
research ( ° A R K E R et al. 1950) . Subsequently, the biliproteins PC , A P C and PE , 
and their chromophores phycocyanobilin and phycoerythrobilin which are 
readily available, have been used extensively as model compounds for phyto­
chrome ;ard its chromophores. 

2.1.1 Degradation Studies 

Chromic icid degradation of bile pigments and biliproteins under carefully con­
trolled coiditions leads to well-defined oxidation products, namely maleimids 

1 Abbrewictions: PC = phycocyanin, PE = phycoerythrin, APC = allophycocyanin 
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COOH COOH 

COOH COOH 

5a 

COOH COOH 

6a 

Fig. 1. Structure of phytochromobilin, related tetrapyrroles and degradation products 
thereof 

and succinimides with typical substitution patterns. These products can be iden­
tified by thin layer chromatography and specific staining ( R Ü D I G E R 1969, 1970). 
Porphyrins and chlorophylls yield the same or similar oxidation products, but 
bile pigments can be distinguished from these tetrapyrrols by oxidation at p H 
0-1. Under these conditions, only bile pigments (and biliproteins) are degraded 
but no other tetrapyrrols. 

Investigation of phytochrome with this method proceeded in several steps. 
With the first (denatured) sample, the bile pigment nature of the P r chromophore 
was unequivocally confirmed ( R Ü D I G E R and C O R R E L L 1969). Furthermore, the 
true degradation products from pyrrole rings B and C [(2) and (3); see Fig. 1] 
were obtained, whereas other products probably derived from rings A and D 
later turned out to be artifactual. The true degradation product from ring D 
(4) was only obtained 3 years later ( R Ü D I G E R 1972). The key product from 
ring A (1 a) was only obtained by modified degradation procedure (chromic 
acid — ammonia degradation, K L E I N et al. 1977, K L E I N and R Ü D I G E R 1978) 
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which also cleaved the covalent linkage between ring A and the protein (see 
Sect. 2.1.5). In summary, the hypothetical structure 5 a for free phytochromobi­
lin was derived from these studies. Additional evidence for the protein binding 
was also derived from these studies (see Sect. 2.1.5). It should be kept in mind 
that degradation studies only allow the deduction of chromophore side chains. 
Structure (5 a) differs from that of phycocyanobilin (6 a) only by a formal ex­
change of an ethyl group for the vinyl group at ring D . The side chains of 
(5 a) are identical with those of phycoerythrobilin, but the conjugated system 
is interrupted between rings C and D in the latter whereas the conjugation 
comprises all four rings in (5 a) according to spectral studies. 

2.1.2 Spectral Studies 

Electronic spectra of free bile pigments consist of one broad band in the visible 
and possibly a second band in the near U V range. Mainly the visible band 
has been used extensively for classification and characterization of bile pigments 
( R Ü D I G E R 1971). Not only the position of this band, but also the shift induced 

Table 1. Visible absorption maxima (nm) of some bile pigments and biliprotein chromo­
phores related to phytochrome P r 

Cation Base Zinc 
complex 

References 

Biliverdin (19a)a 700 653 715 RÜDIGER et al. 
(1968) 

Mesobiliverdina 685 630-655 688 KÖST et al. (1975) 

Octaethylbiliverdin (26)a 693 657 691 SCHEER(1976) 

Phytochromobilin (5a)a 690 

708 610 -

SlEGELMAN 
et al. (1966) 
WELLER and 
GOSSAUER (1980) 

Phycocyanobilin (6a) 687 603 628, 673 KÖST et al. (1975) 

Phytochrome P, (15)b 675-689 620-625 650 (590) GROMBEIN et al. 
(1975) 

Phycocyanin PC (28)b 665-670 610 (590) 640 (590) GROMBEIN et al. 
(1975) 

A-dihydrobiliverdin (20)a 665 594 638 SCHEER (1976) 

A-dihydrobiliverdin (20)c - 617 + 566 -

Phycocyanobilin (6a)c - 641 +587 — RÜDIGER et al. 
(1980) 

Methanoladduct (5c)c - 636 + 582 -
Phytochromobilin (5a)c - 653 + 600 -

a Methanol 
b 6 m guanidinium chloride 
c Ethyl acetate 
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by derivatization (e.g., cation or zinc complex formation) is characteristic for 
the chromophore type. The data of Table 1 show that phytochromobilin fits 
into the series of fully conjugated bilins (formerly called bilatrienes). 

Biliproteins cannot directly be compared with free bile pigments in this 
respect because, in the native state, spectral properties of bilin chromophores 
are drastically modified by the protein (see Sect. 2.1.6). But after unfolding 
of the peptide chain, biliproteins behave similarly to free bilins ( K Ö S T et al. 
1975, G R O M B E I N et al. 1975). Phytochrome (P r) and P C unfolded with guani-
dinium chloride are included in Table 1. 

The data of Table 1 are consistent with structure (5 a) for phytochromobilin. 
A small red shift compared with the data of phycocyanobilin (6 a) can be ex­
plained by the increment of the vinyl group at ring D (see Fig. 2). This increment 
(vinyl versus ethyl) can also be observed in other bile pigments. Differing A m a x 

values reported for the cation of (5a) ( S I E G E L M A N et al. 1966, W E L L E R and 
G O S S A U E R 1980) are probably due to slightly different conditions of measure­
ment which could lead to different populations of bilin conformers in solution. 
This is a basic problem in bile pigment spectroscopy because it was shown 
that solutions of bile pigments mostly consist of mixtures of conformers with 
different spectral properties ( B R A S L A V S K Y et al. 1980a, L E H N E R et al. 1978a, 
1979, H O L Z W A R T H et al. 1978, 1980, S C H E E R et al. 1977, PÉTRIER et al. 1979; 
see also Sect. 2.1.6). These discrepancies are especially pronounced with the 
free bases (Table 1). Solutions of free bases contain sometimes two peaks in 
varying intensity or one peak with pronounced shoulders which can best be 
resolved by derivative spectroscopy ( R Ü D I G E R et al. 1980). 

b i l i v e r d i n ]9_a m e s o b i l i v e r d i n 
— o c t a e t h y l b i l i v e r d i n 2 6 

D A 

p h y t o c h r o m o b i l i n 5a^ 

D A 

p h y t o c h r o m e 15 

p h y c o c y a n o b i l i n 6a 

p h y c o c y a n i n 
A - d i h y d r o o c t a e t h y l b i l i v e r d i n 20 

Fig. 2. Structural features of 
some bile pigments and bilipro-
tein chromophores related to 
phytochrome P r. Only substi-
tuents of rings A and D are given 
as relevant for spectral proper­
ties, all saturated substituents are 
indicated by a single line. 
Rings B/C and connection be­
tween all 4 rings are identical [see 
formula (5)] except for the oc-
taethyl-derivatives bearing ethyl 
groups at all eight /?-pyrrolic po­
sitions 

A comparison of phytochromobilin and phytochrome (Table 1) reveals a 
spectral shift which is due to the ethylidene group at ring A in the former 
pigment. This group is absent in phytochrome (see Fig. 2). The same spectral 
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shift is also observed with phycocyanobilin and PC (Table 1). Apparently, the 
ethylidene groups of the free bile pigments are absent as long as the pigments 
are covalently linked to the protein. Therefore the ethylidene side chain of 
ring A has been deduced as the site of linkage with the protein. 

2 .1 .3 Cleavage from the Protein 

The successful cleavage of the covalent linkage between bile pigments and 
proteins in plant biliproteins was a precondition for the elucidation of the struc­
tures of the free bile pigments. The first method applied to PC and PE , namely 
treatment with cold concentrated H C l ( O ' H E O C H A 1963 , O ' C A R R A et al. 1964) 
was abandoned later because it can yield artifactual bile pigments ( B E U H L E R 
et al. 1976) . The second method, cleavage with boiling methanol ( O ' C A R R A 
and O ' H E O C H A 1966) and higher alcohols (Fu et al. 1979) led to isolation and 
structural elucidation of phycocyanobilin and phycoerythrobilin (CRESPI et al. 
1967 , C O L E et al. 1967 , R Ü D I G E R et al. 1967) . However, the yield is low and 
possibly mixtures of isomeric bile pigments are obtained (Fu et al. 1979) . The 
best cleavage method so far which gives 1 0 0 % yield of phycocyanobilin from 
P C is the cleavage with H B r in trifluoroacetic acid ( K R O E S 1970 , S C H R A M and 
K R O E S 1971) . This method also cleaves phycoerythrobilin from PE ( B R A N D L -
MEIER, B L O S and R Ü D I G E R unpublished). 

Whereas the treatment with concentrated H C l did not cleave the free chro­
mophore from phytochrome, the method with boiling methanol was successful 
( S I E G E L M A N et al. 1966) . However, the yield was so poor that only an incomplete 
characterization was possible (Table 1). Also, the cleavage method with H B r 
in trifluoroacetic acid did not work with phytochrome ( K R O E S 1970) . This was 
later explained by secondary reactions of the vinyl group first with H B r and 
then with functional groups of the protein ( B R A N D L M E I E R et al. 1980) . The appli­
cation of the H B r method to chromopeptides obtained from phytochrome 
yielded free phytochromobilin [(5a), see Fig. 1] and the methanol adduct (5c). 
Both were characterized ( B R A N D L M E I E R et al. 1980 , R Ü D I G E R et al. 1 9 8 0 ; cf. 
Table 2) by comparison with authentic samples obtained by total synthesis (see 
Sect. 2 .1 .4) . 

Table 2. R F values of bile pigments related to phytochro­
mobilin (RÜDIGER et al. 1980). HPLC-plates (Merck, 
Darmstadt) coated with silica gel G, solvent A : carbon 
tctrachloride/ethyl acetate 1:1 (v:v), solvent B: carbon 
tetrachloride/acetic acid 1:1 (v:v) 

A B 

E-phytochromobilin (5a) 0.40 0.41 
Z-phytochromobilin (5b) 0.45 0.48 
E-phycocyanobilin (6a) 0.35 0.37 
Z-phycocyanobilin (6 b) 0.41 0.43 
E-methanol adduct (5c) 0.27 0.35 
Z-mcthanol adduct (5d) 0.33 0.43 
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2.1.4 Total Synthesis 

The chemical structure of natural phytochromobilin was unequivocally con­
firmed by total synthesis of the racemic compound (5 a) ( W E L L E R and G O S S A U E R 
1980) . The synthetic material furthermore allowed the investigation of the reac­
tivity which was relevant to the cleavage reaction ( R Ü D I G E R et al. 1980). 

Important steps of the total synthesis were the connection of rings A and 
B, the introduction of the vinyl group at ring D and the condensation of the 
2-pyrromethenone compounds (9) and (11) (rings A-f -B and C + D, respectively) 
to the final tetrapyrrole (see Fig. 3). The reaction of the monothioimide (7) 
(ring A ) and the phosphorus ylide (8) (ring B), a general method for the synthesis 
of alkylidene lactams ( G O S S A U E R et al. 1977) , had been applied before to the 
synthesis of phycocyanobilin (GOSSAUER and H I N Z E 1978) and phycoerythrobilin 
(GOSSAUER and W E L L E R 1978 , G O S S A U E R and K L A H R 1979) . The introduction 
of the vinyl group starting from a primary hydroxyl function had also been 
applied to phycoerythrobilin (GOSSAUER and W E L L E R 1978) . The final condensa­
tion reaction had also been applied before to a number of bile pigments. Interest­
ingly, a photoisomerization at the ethylidene double bond of 5 a was achieved 
( W E L L E R and G O S S A U E R 1980) . The thermodynamically more stable E-phyto-
chromobilin (5 a) was transformed into the Z-isomer (5 b), which could thermally 
be reconverted to (5 a). The analogous photoisomerization was also observed 
with phycocyanobilin (6a, 6b; formulas see Fig. 1). 

COOCH 2C 6 H 5 

J5a 

Fig. 3. Total synthesis of phytochromobilin (WELLER and GOSSAUER 1980). /Z?w = C (CH 3 ) 3 

Treatment of E-phytochromobilin (5a) with H B r yielded a highly reactive 
bromo derivative which was not isolated as such. Addition of methanol led 
to quantitative formation of the methanol adduct (5c) ( B R A N D L M E I E R et al. 
1980) . With Z-phytochromobilin (5 b), the same reaction sequence yielded a 
mixture of (5a) and (5c) ( R Ü D I G E R et al. 1980) . Apparently, at least two reactions 
compete with each other, one of which finally leads to isomerization at the 
ethylidene group. Because some (5 a) was obtained besides (5 c) from the native 
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phytochromobilinpeptide ( R Ü D I G E R et al. 1980) , a mixture of (5 a) and (5 b) 
is considered to be the primary product of the cleavage reaction. 

2 .1 .5 Protein Linkage and Stereochemistry 

Information about the covalent linkage between phytochromobilin and the pep­
tide moiety in phytochrome came from analysis of phytochromobilinpeptides 
( F R Y and M U M F O R D 1 9 7 1 , L A G A R I A S and R A P O P O R T 1 9 8 0 ; see Table 3). Accord­
ing to this analysis, the sequence of the main product (an undecapeptide) is 
Leu-Arg-Ala-Pro-His-Cys-Ser-His-Leu-Gln-Tyr. Minor chromopeptides were 
an octapeptide and presumably a hepta- and a decapeptide derived from the 
same region of the peptide chain. Because the blue color was extracted at that 
Edman degradation step which also removed cysteine, the thiol group was con­
sidered as the chromophore-binding function of the protein ( L A G A R I A S and 
R A P O P O R T 1980). This situation is the same as in P C ( F R A N K et al. 1978 , L A G A R ­
IAS et al. 1979, W I L L I A M S and G L A Z E R 1978 , B R Y A N T et al. 1978) and P E (KÖST-
R E Y E S et al. 1975, M Ü C K L E et al. 1978 , K Ö S T - R E Y E S and K Ö S T 1979) . 

Table 3. Amino acid sequence analysis of a phytochromobilinpeptide. (LAGARIAS and 
RAPOPORT 1980) 

Amino Original PTH derivative recovered after each step 
acid analysis of the Edman degradation 

1 2 3 4 5 6 7 8 9 10 11 

His 2.0 + + 
Arg 0.9 + 
Cys 0.9 + 
Ser 0.7 + 
Gin 0.9 + 
Pro 1.0 + 
Ala 1.0 
Leu 2.1 + + 
Tyr 0.8 + 

The site of linkage of the thiol group was elucidated by two independent 
approaches. 

1. It was demonstrated that synthetic thioethers, in an elimination reaction, 
yield different alkene compounds for different positions of the sulfur substituent 
(Fig. 4 ) . The C-3 thioether (12) yields the maleimide (13) whereas the C - 3 1 -
thioether yields the ethylidene succinimide ( la) ( S C H O C H et al. 1974) . Because 
( la) was the only product obtained from phytochrome in this reaction ( K L E I N 
et al. 1 9 7 7 ; see also Sect. 2 . 1 . 1 ) it was concluded that the sulfur linkage is local­
ized at C - 3 1 (see partial Structure 15). 

2. The same conclusion was drawn from high resolution proton N M R spec­
troscopy of the phytochromobilin undecapeptide ( L A G A R I A S and R A P O P O R T 
1980) . This investigation was based on a previous extensive investigation of 
a phycocyanobilinpeptide, a synthetic reference peptide lacking the chromo-
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15 , rings B, C, D as in 

K 1a 

Fig. 4. Elimination reaction with synthetic thioether compounds as models for ring A 
of phytochromobilin. (SCHOCH et al. 1974) 

phore and free phycocyanobilin ( L A G A R I A S et al. 1979). Double resonance exper­
iments with the chromopeptide confirmed the hydrogenated ring A and the 
substitution at C - 3 1 . The signals due to the chromophore in the phytochromobi­
linpeptide agreed well with those of the phycocyanobilinpeptide, including dou­
ble resonance experiments. Therefore the structure of ring A and the thioether 
linkage are identical in PC and phytochrome. The only difference were the 
signals for the vinyl group of ring D (phytochromobilinpeptide) versus the sig­
nals for the ethyl group of ring D (phycocyanobilinpeptide). 

Present knowledge on the stereochemistry of phytochromobilin and its pro­
tein linkage is only based on indirect evidence. It has been assumed that the 
absolute configuration at C-2 which is R in phycoerythrobilin (GOSSAUER and 
W E L L E R 1978) and probably in phycocyanobilin ( B R O C K M A N N and K N O B L O C H 
1973) is also R in phytochromobilin, but direct evidence is still lacking ( K L E I N 
et al. 1977, L A G A R I A S and R A P O P O R T 1980). The assumption of the trans-config­
uration at ring A (i.e, 2R, 3R, or alternatively, 2S, 3S) was supported by the 
exclusive formation of trans-configurated products by addition of methanol 
or thiols to the ethylidene group of model imides and phycocyanobilin ( K L E I N 
and R Ü D I G E R 1978, 1979, G O S S A U E R et al. 1980). The observed coupling constant 
3 J 2 H _ 3 H in the ' H - N M R spectrum of both the phycocyanobilin-peptide and 
the phytochromobilin-peptide agrees with the trans-configuration at ring A ( L A ­
GARIAS et al. 1979, L A G A R I A S and R A P O P O R T 1980). 

Evidence for the configuration at C-3 1 came from elimination experiments 
(chromic acid-ammonia-degradation) in which phytochrome behaved like the 
model compound (16a) and differently from model compound (16b) ( K L E I N 
et al. 1977). The behavior of (16a) was also found with PC and PE ( K L E I N 
and R Ü D I G E R 1978, M Ü C K L E et al. 1978) (Fig. 5). The stereochemistry of the 
model compounds (16a) and (16b) was unequivocally confirmed by X-ray analy­
sis (LOTTER et al. 1977, L O T T E R , K L E I N , R Ü D I G E R unpublished). Independent 
X-ray analysis was performed for the corresponding imides (17 a) and (17 b) 
obtained from phycocyanobilin methanol adducts and by total synthesis (Gos-
SAUER et al. 1980). 
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Fig. 5. Model imides for elimination 
(16) and addition (17) reactions at 
C-3 1 . The elimination was carried 
out with racemates, of which only 
one enantiomer has been drawn 
here. Configuration: (16a) 2R, 3R, 
3 !R/2S, 3S, 3'S; (16b) 2R, 3R, 3'S/ 
2S, 38 /3^ . Phytochrome behaves 
like (16a) 

H<c,a 

S O 2 C 2 H 5 

H3C »»»••* (I 

Thus the most probable configuration of the phytochrome chromophore 
and its protein linkage is 2R , 3R, 3*R, but the alternative possibility 2S, 3S, 
3 l S cannot yet be ruled out. 

The question of a second linkage between chromophore and protein will 
be treated in Sect. 2.2.1. 

2.1.6 The Native State 

Native phytochrome ( P R ) differs from denatured phytochrome, phytochromobi-
linpeptide and model compound (20) in its absorption spectrum (see Fig. 6) 
and many properties of the chromophore. These differences are not due to 
changes in the chemical structure of the chromophore and — if at all — only 
partly to protonation or deprotonation. They must rather be due to modification 
of the chromophore properties by non-covalent interactions with the native 
protein (see S C H E E R 1980 for a discussion). 

Because bile pigments are flexible molecules, the influence of chromophore 
conformation on spectral properties has been studied theoretically by several 
authors ( B U R K E et al. 1972, B L A U E R and W A G N I È R E 1975, S H A E and S O N G 1975, 
SUGIMOTO et al. 1976,1977, P A S T E R N A K and W A G N I È R E 1979, S C H E E R , F O R M A N E K 
and SCHNEIDER 1982). The main conclusion was that the oscillator strength 
of the long-wavelength band ( f j is small compared to that of the short-wave­
length band (f2) in cyclic conformations. The predicted spectral properties were 
verified for biliverdin-type bile pigments with fixed extended [(25) BOIS-CHOUSSY 
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W a v e l e n g t h [ n m ] W a v e l e n g t h [ n m ] 

Fig. 6 A, B. Electronic spectra of phytochrome and its chromopeptide. A native P r (—), 
native P f r ( ) both in 0.1 M sodium phosphate buffer, pH 7.8. B phytochromobilin-
peptide in 10% acetic acid. (RÜDIGER, BRANDLMEIER, THÜMMLER unpublished data) 

and B A R B I E R 1978)], and cyclic-helical (24) (formulas in Fig. 7) topologies ( F A L K 
and T H I R R I N G 1981), and cyclic conformations have been determined for the 
conformationally unrestricted pigments both in solution and in the crystal 
( L E H N E R et al. 1978a, b, F A L K et al. 1978, F A L K and H Ö L L B A C H E R 1978, 
S H E L D R I C K 1976). Based on this criterion, the P r chromophore should have 
a more extended conformation in its native state but a cyclic conformation 
in the chromopeptide and in unfolded P r ( B U R K E et al. 1972, B R A N D L M E I E R 
et al. 1981a). 

Unfortunately, unfolding of P r is irreversible. The process is fully reversible, 
however, with PC and P E and was investigated in more detail with these bilipro­
teins by absorption, fluorescence, circular dichroism and chemical methods 
(SCHEER and K U F E R 1977, L A N G E R et al. 1980, Z I C K E N D R A H T - W E N D E L S T A D T 
et al. 1980). Especially P C exhibits differences between the native and the dena­
tured state which are very similar to those in P r - A 2 / A j , which is roughly propor­
tional to f 2 / f i , increases from 0.24 to 2.32 in PC and from 0.35 to 2.27 in 
P r . This indicates rather similar non-covalent interactions of the two similar 
chromophores (15) and (28) with the two different peptide chains of P r and 
PC, respectively. The precise conformation is still unsettled. Theoretical calcula­
tions (see above) predict semi-extended to fully extended conformations. The 
tentative structure (15) has been proposed for the P r chromophore in its native 
state because A 2 / A , is similar to that in the fully extended isophorcabilin (25, 
A 2 / A ! = 0 . 2 5 ) . 

Ramachandran-type calculations revealed the enantioselective preference of 
a twisted topology for cyclic and extended conformations of A-dihydrobilin-
diones (SCHEER et al. 1979). These calculations agree with strong C D bands 
in native and denatured P r (Table 5, Sect. 2.3). Interestingly, the signs of both 
chromophoric bands of native P r (positive at 660 nm, negative at 365 and 
377 nm) are reverted by denaturation or proteolytic digestion (negative at 
665-670 nm, positive at 373-375 nm). This is in contrast to PC , in which the 
chromophore C D bands do not change their signs upon denaturation (SCHEER 
et al. unpublished). The C D spectrum of denatured P r is, however, no mirror 
image of that of native P r . 
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Fig. 7. Proposal for the 
structure of native P r chro­
mophore, and structures for 
model compounds 

Thus the chromophores in native and denatured P r do not represent merely 
an enrichment of different enantiomers, which is also likely from the different 
absorption spectra. Whereas a cyclic-helical conformation for the uncoupled 
chromophore is likely, a direct correlation of distinct conformations of the 
native chromophore species with its C D spectrum is not possible, but two factors 
relevant for the actual chromophore conformation and dissymmetry can be 
inferred from these experiments : The essential factors which govern the preferen­
tial chromophore helicity in P r-peptide and denatured P r are asymmetric centers 
of the chromophore itself This influence is counteracted and overcome by the 
influence of the protein in native P r . 



130 W. RÜDIGER and H . SCHEER: 

2.2 P f r Structure 

2.2.1 Degradation Studies 

Chromic acid degradation yields essentially the same products as obtained by 
degradation of P r , irrespective of the procedure applied. Methylvinylmaleimide 
(4) and hematinic acid imide (2) are obtained under non-hydrolytic conditions, 
and additional (2) as well as methylethylidene-succinimide (la) are liberated 
by subsequent hydrolysis (see Fig. 1). ( la) is also obtained by the chromic 
acid-ammonia method ( K L E I N et al. 1977). Since the chromophore of denatured 
P f r is stable under acidic conditions ( G R O M B E I N et al. 1975), a rearrangement 
to P r is unlikely during degradation. It is thus concluded, that not only the 
/?-pyrrolic substituents are the same in P r and P f r , but that also the 3 ^thioether 
linkage and possibly an additional ester linkage of the P f r chromophore to 
the protein are present in both forms. Whereas any reaction of the lactam 
carbonyl groups (CRESPI et al. 1968, L A G A R I A S and R A P O P O R T 1980), Z , E -
isomerizations ( F A L K et al. 1978), and any reaction at the a-pyrrolic and me thine 
positions may remain unnoticed by the chromic acid degradation, the release 
of the SH-group with formation of an endocyclic A 2-double bond as present 
in biliverdin (S IEGELMAN et al. 1968, R Ü D I G E R and C O R R E L L 1969, S O N G et al. 
1979, L A G A R I A S and R A P O P O R T 1980) or of an additional double bond at the 
C-3 substituent (CRESPI et al. 1968) can be excluded. 

As in P r the presence of a bond to the protein via one of the propionic 
acid side chains is still unsettled. Such a bond has been implicated by the release 
of additional (2) after hydrolysis of the chromic acid degradation products 
( K L E I N et al. 1977) but later been questioned as a safe criterion for such a 
bond in biliproteins ( T R O X L E R et al. 1978). However, quantitative studies with 
radiolabeled P E from Porphyridium cruentum indicate a second bond in this 
pigment ( K Ö S T and T R O X L E R unpublished). A bond of this type is absent in 
two chromopeptides isolated from P r ( L A G A R I A S and R A P O P O R T 1980), but these 
peptides contain a serine residue next to the binding cystein, and ester bonds 
are susceptible to cleavage during proteolytic digestion. A chromopeptide con­
taining a serine-propionate bond has been isolated from P E from Pseudanabaena 
sp. W1173, but again an artifact could not be excluded ( M Ü C K L E et al. 1978). 
A definite proof may require milder degradation methods. Two such methods 
have been developed with PC and may be useful for phytochrome as well. 
The first method splits the tetrapyrrole skeleton selectively between rings A 
and B (SCHEER et al. 1977), the second between rings B and C. In a first applica­
tion of these new degradation methods, a second protein bond at ring B in 
PC form Spirulina platensis has been suggested ( K U F E R et al. 1982a). 

2.2.2 Spectral Studies 

The spectrum of native phytochrome is shifted by approximately 70 nm 
(1,450 c m - 1 ) to the red upon conversion of P r to P f r . This has been taken 
as an indication of an increased length of the conjugated double bond system 
in P f r , and consequently several proposals for the structure of the P f r chromo-



7 Chromophores in Photomorphogenesis 131 

phore are based on this interpretation (CRESPI et al. 1968, S T R U C K M E I E R et al. 
1976, S I E G E L M A N et al. 1968, R Ü D I G E R and C O R R E L L 1969, S O N G et al. 1979). 
As has been pointed out in Section 2.1.6., however, the spectra of native bilipro­
teins are strongly influenced by non-covalent chromophore protein interactions, 
which render structural assignments on the basis of the spectra of the native 
chromophores ambiogous (see S C H E E R 1980, for references). If these interactions 
are uncoupled by denaturation ( G R O M B E I N et al. 1975) or proteolysis ( B R A N D L -
MEIER et al. 1980, 1981a) at low p H , the 730 nm absorption of native P f r is 
shifted to 620 nm. Denatured P r absorbs under the same conditions at 660 nm 
(cation form). The P f r chromophore uncoupled from the protein is stable only 
in its protonated form, and reverts to the P r chromophore above p H 5 ( G R O M ­
BEIN et al. 1975). From analogy with a series of free bile pigments (KÖST et al. 
1975), the free base P f r chromophore can be estimated to absorb around 570 nm, 
corresponding to a "purpur in" (SCHEER et al. 1977) or " v i o l i n ^ chromophore 
( S C H E E R and K R A U S S 1977, K R A U S and SCHEER 1979). Two conclusions can 
be drawn from these results: (1) The chromophores of P r and P f r are chemically 
different, and do not only differ by their states of protonation, or conformation 
( S T R U C K M E I E R et al. 1976; see also the theoretical studies of B U R K E et al. 1972, 
C H A E and S O N G 1975, S U G I M O T O et al. 1977, P A S T E R N A K and W A G N I È R E 1979). 
(2) The conjugation system of the P f r chromophore is one double-bond shorter 
than that of the P r chromophore, in contrast to conclusions derived from studies 
of the native pigments. A chromophore structure like (18 a) (Fig. 8) in which 
the A 4-double-bond is (at least spectroscopically, K R A U S S et al. 1979) abolished 
would best agree with these data ( G R O M B E I N et al. 1975). 

2.2.3 Chemical Model Studies 

The data from chromic acid degradation and denaturation are yet insufficient 
to establish a complete structure for the P f r chromophore. Chemical studies 
starting from P r model compounds as well as M O calculations have, therefore, 
been carried out to give additional information on the reactivity of P r and 
spectroscopic properties of chemically reasonable structures derived thereof. 
Possible structures for the P f r chromophore obtained on this basis can then 
be further scrutinized by the criteria summarized below, which are derived from 
the known differences of P r and P f r . 
1. The cation of any model compound must have an absorption around 620 nm 

according to the denaturation studies described in Sect. 2.2.2. 
2. Denatured ( G R O M B E I N et al. 1975) and pepsin-digested P f r ( T H Ü M M L E R et al. 

1981) are convertible back to P r both thermally and photochemically, hence 
any model bilin for the P f r chromophore should be thermodynamically less 
stable than and convertible back to its original form corresponding to P r . 

3. The chromophore of native P f r (see below) is probably present in its deproton-
ated form ( P A S T E R N A K and W A G N I È R E 1979, R Ü D I G E R 1980). In this case, 
the p K B value of any model should be within the physiological p H range. 

4. Both P r and P f r carry probably one single chromophore in small as well 
as in large phytochrome, and the molecular weight remains within the same 
range upon photoconversion (see P R A T T 1978, R Ü D I G E R 1980). Any dimeriza-
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tion reactions of the chromophore (SCHEER and K R A U S S 1977) can, therefore, 
be excluded. 

5. The reaction does not require any cofactors besides the protein since the 
phytochrome phototransformation occurs in solution of the purified pigment. 
Further possible criteria (e.g., stability of the P F R chromophore towards reduc­
tion, oxidation, acids and bases) are discussed below. 
Currently, there are two different models which meet most of the criteria 

summarized above. 
The first model reaction is the sequence of oxidation, nucleophilic addition 

and tautomerization shown in Fig. 9. It is based on reactivity studies of the 
A-dihydro-bilindione (20), which has been taken as a model for the P r-chromo-
phore (SCHEER 1976). In neutral and alkaline media, (20) undergoes an easy 
and regioselective photooxidation at the C-5 methine bridge to a variety of 
products. In the presence of oxygen, 4 4 purpurins" are formed which share the 
oxotripyrrinone chromophore (21) (see Fig. 8) as a common substructure 
( S C H E E R et al. 1977). In the absence of oxygen, " v i o l i n s " are produced, which 
may all arise from one or two one-electron oxidation steps ( K R A U S S and S C H E E R 
1979, E I V A Z I et al. 1977) and a subsequent addition at C-5 (SCHEER and K R A U S S 
1977, K R A U S S et al. 1979). O f particular interest is the pyridinium adduct (22) 
( K R A U S S et al. 1979). The spectral shift to 570 nm of the free base [criterion 
(1) ] is — as in the E ,Z ,Z-b i l ive rd in (19 b) discussed below — not brought about 
by abolishing the zf4-double bond, but rather by uncoupling it due to steric 
hindrance. The formation of (22) is thermo- but not photo-reversible [critn. 
(2) ] and its p K for deprotonation [critn. (3)] is in the physiological region 
( K R A U S S et al. 1979). Criterium (4) is met as well. A reaction of this type would 
require very specific functions of the apoprotein as both the oxidant and the 
nucleophile (Fig. 9), since phytochrome is not known to contain any suitable 
cofactors ( H U N T and P R A T T 1980, Q U A I L et al. 1978, R o u x et al. 1975). Cystine 
residues could serve as the oxidant. A n involvement of cystine may be indicated 
by the finding of one more easily accessible S H group in P F R than in P R ( H U N T 
and P R A T T 1981). However, modification of either cysteine ( H U N T and P R A T T 
1981) or cystine ( H A H N and S O N G 1981) with water-soluble reagents does not 
affect the phototransformation reactions. Tryptophan, tyrosin, serine, cysteine 
and others may serve as the nucleophile. (20) reacts readily with tryptophane 
derivatives to give products UV-vis spectroscopically similar to (22) ( K R A U S 
and S C H E E R 1981). In Fig. 9, tryptophane has been formulated arbitrarily as 
the nucleophile. 

The second model is a geometric isomerization of a double bond between 
rings A and B or C and D . It has first been invoked by K R O E S (1970) and 
M U M F O R D and J E N N E R (1971), but only recently gained further support. Based 
on earlier studies on the Z - E isomerization of dipyrroles (GOSSAUER and INHOF-
FEN 1970), F A L K and coworkers conducted a systematic study of geometric 
isomerization reactions of bile pigments and partial structures derived therefrom 
(see F A L K et al. 1978, 1980). 

Biliverdin is most stable in solution in the all-syn, Z geometry (19a) ( L E H N E R 
et al. 1978, F A L K and H Ö L L B A C H E R 1978). The geometric isomers with anti-E, 
syn-Z, syn-Z geometry like (19 b) are accessible by photoisomerization of all 



134 W . RÜDIGER and H . SCHEER: 

Fig. 9. Tentative model for the P r ^ P f r interconversion as derived from photooxidations 
of the A-dihydrobilindion (20) as a model for the Pr-chromophore. (KRAUSS and SCHEER 
1981) 

syn-Z) isomers ( F A L K et al. 1978) or by direct synthesis (GOSSAUER et al. 1981). 
The isomer 19b absorbs at shorter wavelengths than (19a) which is not due 
to the Z,E-isomerization per se but rather to a twist of the z/15-double bond 
which partially uncouples ring D from the remaining 7r-system ( F A L K and H Ö L L ­
B A C H E R 1978). The isomer (19b) is thermodynamically less stable (AH* = 
105 kJ m o l " 1 ) and reverts to (19a) both thermally ( z l H * = 2 0 k J m o l " 1 ) and 
photochemically ( F A L K and G R U B M A Y R 1979). In biliverdins, the z14 and A 15 
bonds between rings A and B , and rings C and D , respectively, are very similar 
( S H E L D R I C K 1976, L E H N E R et al. 1978 b), but this is no longer true in the A -
dihydropigments, of which phytochrome is a member. Ramachandran-type cal­
culations indicate a preferential isomerization at the A4 bond adjacent to the 
reduced ring which carries the bulky thioether substituent (SCHEER et al. 1979). 
Model compounds without this bulky substituent [e.g., (20)] yield predominantly 
the more stable 15E isomer ( B L A C H A - P U L L E R 1979, K U F E R et al. 1982b). Because 
the UV-vis spectral properties of this 4Z, 10Z, 15E isomer are not much different 
from expected properties of the 4E, 10Z, 15Z compound it cannot yet be pre­
dicted whether the P f r-peptide (and photoisomerized bilipeptides obtained from 
P C and P R , T H Ü M M L E R and R Ü D I G E R unpublished) contains a 4E, 10Z, 15Z 
(18b) or a 4Z, 10Z, 15E chromophore (18c). Recent results of high-resolution 
N M R spectroscopy demonstrated that the P F R chromophore is the 4Z, 10Z, 
15E isomer 18c ( R Ü D I G E R , T H Ü M M L E R , C M I E L , S C H N E I D E R unpublished). 
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Fig. 10. Tentative structure for native P f r chromophore on the basis of the Z,E-isomeriza-
tion/deprotonation model 

The Z,E-photoisomerization of (19) proceeds via a rubinoid pigment, which 
is the substrate proper for the photoisomerization ( F A L K et al. 1980, G O S S A U E R 
and B L A C H A - P U L L E R 1981). However, derivatives in which the tetrapyrrolic skel­
eton is strained or distorted from all-syn, Z geometry, can undergo a direct 
photoisomerization in solution as well ( F A L K and T H I R R I N G 1979, 1980). In 
phytochrome, such distortions may arise both from the A-dihydrostructure and 
the influence of the native protein. In the P r-peptide and in PC peptides in 
which a closed chromophore conformation predominates, photoisomerization 
so far was possible via a rubinoid intermediate. The photoisomerization product 
obtained in this way from the P r-peptide is spectrally and chromatographically 
identically with the P f r-peptide ( T H Ü M M L E R and R Ü D I G E R unpublished). Photo­
isomerization of the chromophore is, therefore, the currently most likely process 
during P r - P f r interconversion. It would meet the criteria (1) (2), (4), (5). The 
catalytic effect of redox-reagents on the P f r-P r-conversions would parallel the 
redox-reagent catalyzed isomerization of stilbenes ( M U M F O R D and J E N N E R 1971). 
A peculiar property of denatured P f r and its peptides is their instability above 
p H 5. They are stable for hours in dilute acids, whereas the E,Z,Z-bilindiones 
are most stable as free bases around neutral p H . The destabilization of P f r 

may be due to a catalytic effect of the two histidines situated next to the binding 
cysteine in the peptide chain ( M U M F O R D and J E N N E R 1971, L A G A R I A S and R A P O ­
PORT 1980). 

2.2.4 The Native State of the Chromophore 

The chromophore-protein interactions are even more pronounced in P f r than 
in P r (Sect. 2.1.6). The tentative structure (18d) (Scheme 9) is based on a geomet­
ric isomerization of the chromophore at the z/4-bond discussed in the previous 
section, and the still rather indirect evidence presented below. 

The long-wavelength absorption of native P f r has its maximum at about 
730 nm. Denatured P f r is unstable at neutral p H , but from the absorption of 
the cation ( A m a x = 615 nm), that of the free base can be estimated to A m a x = 570 nm 
(Sect. 2.2.2). This would correspond to a spectral shift of 160 nm (3,845 c m - 1 ) 



Table 4. Absorption maxima (/im a x) of and wavelength shifts (A v) of different geometries and protonation states of bilindiones. The cations 
and anions are produced from the free bases dissolved in methanol by the addition of HCl and sodium methoxide, respectively 

Pigment 'Lax (nm) 
(Form A) 

4 a x (nm) 
(Form B) 

A v (cm 1 ) References 

660 (native) 615 (denatured, 1,109 GROMBEIN et al. (1975) 

730 570 (free base) 3,845 GROMBEIN et al. (1975) 

APC-I 655 (native) 600 (denatured) 1,376 C A N A A N I and G A N T T (1980), 
GYSI and ZUBER (1976), 
Z iL iNSKAS et al. (1978) 

APC-B 670 (native) 600 (denatured) 1,741 G L A Z E R and B R Y A N T (1975) 

PC 620 (native) 600 (denatured) 537 SCHEER (1976) 

PE 560 (native) 525 (denatured) 1,190 KÖST et al. (1975) 

Formylbilindione 
zinc complex (23) A 

830 (monomer) 750 (dimer) 1,285 STRUCKMEIER et al. (1976) 

Bilindione 710 [Cyclic free 
base of (24)] 

605 [extended, 
free base of (25)] 

2,444 F A L K and THIRRING (1981), 
BOIS-CHOUSSY and BARBIER (1978), B R A N D L ­
MEIER et al. (1981 a) 

Bilindione 740 [Cyclic, 
cation of (24)] 

605 [extended, 
free base of (25)] 

3,015 F A L K and THIRRING (1980), 
BOIS-CHOUSSY and BARBIER (1978), BRANDL­
MEIER et al. (1981 a) 

Bilindione 
(26) A 

657 (free base) 770 (anion) 2,234 SCHEER (1976) 

A-Dihydro-
bilindione (20) 

594 (free base) 766 (anion) 3,780 SCHEER (1976) 

a Formulas in Fig. 9 
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between the native and the denatured form. From the data in Table 4 it can 
be seen that this shift is much larger than the shifts induced in free bile pigments 
by conformational changes or protonation. One known process which leads 
to shifts of the same magnitude is the combination of a severe conformational 
change with a protonation of the chromophore [cation of the cyclic-helical 
(24) vs. free base of the extended (25)]. This would require the chromophore 
of denatured P f r in an extended conformation, in contrast to all known free 
bilindions of the violin and verdin spectral type. It would also require the chro­
mophore of native P f r in a cyclic conformation, which is unlikely from a compar­
ison of native P r and P f r . Linear dichroic data indicate at most moderate geomet­
rical differences between the two forms ( S O N G et al. 1979). The C D bands of 
P r and P f r differ in sign and magnitude ( B R A N D L M E I E R et al. 1981 b, and refer­
ences cited therein), however, and a direct comparison of P r and P f r may be 
ambiguous as long as the P f r structure is unknown. The other process known 
to produce extreme shifts is the deprotonation of bilindiones, and especially 
of the 2,3-dihydrobilindiones typical for biliproteins (SCHEER 1976). The long-
wavelength band of (20), a model for the P r chromophore, is shifted by 
3,780 c m - 1 to the red upon deprotonation. It has been suggested on this basis 
that the chromophore of native P f r is present in its deprotonated form ( G R O M ­
BEIN et al. 1975), which has been supported by molecular orbital calculations 
( P A S T E R N A K and W A G N I È R E 1979). This model would require a p K B of the P f r 

chromophore within the physiological range leading to criterion (3) which has 
been used to discriminate between P f r models (Sect. 2.2.3). Protonation-depro-
tonation reactions have been suggested as primary processes in the low tempera­
ture photochemistry of biliproteins ( F R I E D R I C H et al. 1981a, b). Two recent 
observations may also be related to a deprotonation of the P f r chromophore. 
The first is a pH-dependent proton uptake or release upon the irradiation of 
phytochrome in solution ( T O K U T O M I et al. 1982). The second is the exposure 
of a hydrophobic protein surface in P f r ( T O K U T O M I et al. 1981, H A H N et al. 
1980), which could be induced by the increased hydrophily of the chromophore. 

The intensity changes of the long-wavelength absorption upon denaturation 
are less pronounced than in the case of P r ( G R O M B E I N et al. 1975). However, 
molecular orbital calculations indicate less dramatic conformation dependencies 
in the spectra of violins ( P A S T E R N A K and W A G N I È R E 1979). Both the red and 
the blue D C bands of P f r change sign upon denaturation, and the signs in 
both native and denatured P f r are opposite to the C D bands of P f r in the respec­
tive states ( B R A N D L M E I E R et al. 1981 b; see Table 5, Sect. 2.3). This is an indepen­
dent proof of the different structures of the P r and P f r chromophores in the 
denatured states. As in P r , it is again difficult to assign a precise conformation 
to P f r in the native state, whereas the overriding influence of the native protein 
on the chromophore is again apparent. 

2.3 Phytochrome Intermediates and Modifications of the Chromophore 

The phototransformations P r ->P f r and P f r - > P r are multistep reactions. Several 
intermediates were detected by either one of the following methods: rapid kinet-
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Fig. 11. Intermediates in phytochrome photoconversions including dark relaxations (solid 
lines according to KENDRICK and SPRUIT 1977; broken lines additional dark reactions 
according to Rüdiger 1980) 

ics of absorption changes after flasch photolysis ( L I N S C H I T Z et al. 1966, L I N -
SCHITZ and K A S C H E 1967, P R A T T and B U T L E R 1970, B R A S L A V S K Y et al. 1980 b), 
low temperature spectral studies in vivo ( K E N D R I C K and S P R U I T 1973 a, b, S P R U I T 
and K E N D R I C K 1973, 1977) and in vitro ( B U R K E et al. 1972, CROSS et al. 1968, 
K R O E S 1970, P R A T T and B U T L E R 1970), dehydration in vivo ( K E N D R I C K 1974, 
K E N D R I C K and S P R U I T 1974, S P R U I T et al. 1975) and in vitro ( B A L A N C É 1974, 
T O B I N et al. 1973), absorption changes after continuous or during quasi-continu­
ous irradiation ("pigment cycling", B R I G G S and F O R K 1969a, b, K E N D R I C K 
and S P R U I T 1972, 1973 a). Each type of study reveals the same sets of intermedi­
ates, which seem different for the forward ( P R - + P F R ) and the back reaction 
( P F R - > P R ) , respectively. The subject has been reviewed by K E N D R I C K and S P R U I T 
(1977), who also suggested a nomenclature similar to the one used for the 
rhodopsin transformations. A n alternative nomenclature based on difference 
maxima is included in Fig. 11. 

K E N D R I C K and S P R U I T (1977) distinguish photoreactions and dark relaxa­
tions; the latter are further divided into those which occur in non-aqueous 
medium and those which require liquid water (Fig. 11). 

According to K E N D R I C K and SPRUIT , the photoreactions (formation of lumi-
R and lumi-F) and the relaxations to meta-R a and meta-F a are chemical events 
essentially restricted to the chromophore, with only minor changes of the apo­
protein. These events are rapid; they occur also at low temperature and in 
non-aqueous medium (e.g., in dehydrated tissue in vivo, in glycerol solution 
in vitro). The subsequent reactions via meta-R b and meta-F b are believed to 
involve conformational interaction of the apoprotein and chromophore, since 
they occur only in a less rigid matrix. They are slowest in the whole reaction 
sequence, they require liquid water and are strongly influenced by the molecular 
environment. 
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If this view is correct, the genuine chemical differences between the P r and 
the P f r chromophore should already exist between lumi R or meta R a and 
P r on the one hand and between lumi F or meta F a and P f r on the other; 
the subsequent reaction steps (to meta R b and P f r , to meta F b and P r , respective­
ly) should only serve to stabilize these differences, e.g., by conformational rear­
rangements. The intermediates are certainly not as well stabilized as the final 
products; this follows from easy back reactions (either photochemically, or 
chemically in the dark), of lumi R, meta R a and possibly meta R b to P r , and 
lumi F to P f r (Fig. 11). The "inverse dark reversion" of phytochrome in dehy­
drated tissues has been related to such a back reaction of an intermediate ( K E N ­
D R I C K and S P R U I T 1974) (see Chap. 17, this Vol.). The molecular basis of the 
presumed stabilization reaction is not clear, however. This question can be 
answered only after a detailed structural investigation of the intermediates, in­
cluding their geometries. 

A sensitive tool for conformational changes of bilin chromophores are C D 
spectra. The C D spectra of native and denatured forms of P r and P f r are different 
from each other (Table 5). Whereas the C D spectra cannot be correlated directly 
with defined conformations of the different forms because these are chemically 
different species, it is obvious that some conformational changes of the chromo­
phore occur during P r - > P f r transformation in addition to (or as a consequence 
of) chemical reactions. This view agrees with the observation of B U R K E et al. 
(1972) that meta R b (then called P b l ) has a low absorption but — in relation 
to the absorption — a strong Cotton effect of the long-wavelength band. This 
has been interpreted as a cyclic, possibly helical conformation for the meta 
R b chromophore whereas P r and P f r should contain more extended chromo­
phores ( B U R K E et al. 1972). 

Table 5. Circular dichroism data of phytochrome forms. (BRANDL-
MEiER et al. 1981b) 

Samples ^max A F 

(nm) (1VT 1 cm" 1) x l O - 3 

P r native 660 -33.5 -110.5 
377 + 35.9 + 118.5 
365 + 35.9 + 118.5 

P r denatured3 670 + 19.4 + 64.6 P r denatured3 

375 -14.6 -48.2 
Pr-peptidea 665 + 26.4 + 87.1 

373 -15.8 -52.1 

P f r native 705 + 8.1 
(corrected)15) 375 -3.0 
P f r denatureda 625 + 4.75 + 15.7 P f r denatureda 

380 -7.2 -23.8 

a In 8 M urea, pH 2.5 
b Corrected for the presence of 20% P r 
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Whereas P R is stable in the dark, P F R can — at least in part — undergo 
a "dark reversion" to P R . It is not yet known whether the dark reversion pro­
ceeds via similar intermediates as the photoreaction. The dark reversion depends 
strongly on the molecular environment. Its rate is increased by divalent metals 
( N E G B I et al. 1975) , by p H changes and by reducing agents like sodium dithionite 
( A N D E R S O N et al. 1 9 6 9 ; M U M F O R D and J E N N E R 1971) , as is the dark relaxation 
from meta R B to P F R ( K E N D R I C K and S P R U I T 1973 a, b). Interestingly, treatment 
of phytochrome with dithionite leads to an addition of sulfoxylate to the chro­
mophore ( K U F E R and S C H E E R 1979) . The equilibria between the native chromo­
phore and the rubinoid addition products favor the native form of P R , but 
the rubinoid form of P F R . Thus a reaction sequence P F R -> P A D D P R is one possibil-
tiy to explain the catalytic effect of reducing agents during dark reversion ( K U F E R 
and S C H E E R 1979) . Such a sequence is not feasable, however, in the acceleration 
of the dark relaxation from meta R B to P F R . 

3 Cryptochrome 

Cryptochrome, the blue light photoreceptor, has been defined by G R E S S E L (1980) 
"as that pigment system having an action spectrum somewhat characteristic 
of flavins and some carotenes. This name refers to its occurrence in cryptogams 
and its cryptic nature." It would, of course, be a paradox in itself to deal 
with the chromophore(s) of a compound of "cryptic nature". However, only 
two candidates for the cryptochrome chromophore are earnestly being discussed, 
namely flavins and carotenoids with a strong preference for the former. Argu­
ments for and against each of these candidates are discussed in an excellent 
and comprehensive way in the book of S E N G E R (1980). Only some arguments 
and examples can be considered here. 

3.1 Flavins 

The best-known flavins are F M N (27a) and F A D (27 b). Both have broad 
absorption maxima at 370 and 450 nm, the characteristic peaks of cryptochrome 
action spectra. However, most action spectra show a fine structure with two 
additional peaks or shoulders around the 450 nm peak (see Chap. 2 and 23, 
this Vol.) . Although this is more similar to the absorption spectra of carotenoids 
in this spectral region, a fine structure of the F M N or F A D band can be 
observed in some flavoproteins (oxidized state, G H I S L A 1980) or with protein-free 
flavin-derivatives in extreme environment ( S O N G et al. 1972). 

A typical reaction of flavins is their photoreduction ("photobleaching") 
in the presence of a suitable electron donor (e.g., E D T A ) . This photoreduction 
is also possible with flavoproteins, e.g., nitrate reductase from Neurospora crassa 
( N I N N E M A N N and K L E M M - W O L F G R A M M 1980). Typical is the concomittant reduc­
tion of cytochrome b-557 of this enzyme. The action spectrum for photoreduc-
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tion of cytochrome b in Neurospora crassa in vivo had previously been shown 
to be the typical cryptochrome spectrum including its fine structure; interestingly 
the absorbance measurements of Neurospora cells in these experiments (pro­
longed irradiation) point to photobleaching of flavins without any fine structure 
( M U N O Z and B U T L E R 1975) . This example demonstrates a principal difficulty 
in identifying a flavin photoreceptor: because of the high photochemical reactivi­
ty of flavins, not only the specific photoreceptor but also all or most of the 
flavins present in abundant amounts in the cell wall react in the same manner. 
The classical argument of correlation between action spectrum and absorbance 
or absorbance difference spectrum (upon "bleaching") is not sufficient in this 
case. Additional correlation arguments are needed (see N I N N E M A N N and K L E M M -
W O L F G R A M M 1980) until the true photoreceptor and then its chromophore can 
be identified. 

(CHOHL o 

I 3
 II 

H 2 C O - P - O R 

i l l 0 

2 7 a : R = H ( F M N ) 

27 b: R = A M P ( FAD) 

3.2 Carotenoids 

A main argument for carotenoids as possible chromophores of cryptochrome 
has been the coincidence of the typical carotenoid absorption spectrum between 
4 0 0 and 5 0 0 nm (including the fine structure) with the cryptochrome action 
spectrum. The U V absorption band which lacks in apolar solvents can be in­
duced for carotenoids in polar solvents ( H A G E R 1970, S O N G and M O O R E 1974) . 
However, photoreceptor chromophores are certainly not free in solution but 
probably bound to a membrane or protein. Protein binding can drastically 
change the absorption properties of chromophores, especially if they are confor-
mationally flexible (e.g., retinal in rhodopsin, phytochromobilin in phyto­
chrome, see above). 

It can therefore be misleading to compare the absorption of chromophore 
candidates in solution with the action spectrum of photoreceptors of chromopro-
tein nature. N o defined carotenoprotein has so far been described as candidate 
for cryptochrome. However, an interesting model has recently been suggested 
by S O N G (1980) . This is the peridinin-chlorophyll a-protein isolated from marine 
dinoflagellates (Fig. 12). Resonance (exciton) interactions between the carot-

o 

C H 2 
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enoid molecules and between the carotenoid and the chlorophyll as acceptor 
molecule allows efficient energy transfer in this system. By way of energy 
transfer, light absorbed by the carotenoid can be active not only for photosyn­
thesis but also for phototaxis of these organisms. A similar situation has, how­
ever, not yet been detected for cryptochrome action. 

4 Phycochrome, Phycomorphochromes and Adaptachromes 

In many cyanobacteria and red algae, light-stimulated developmental responses 
(e.g., chromatic adaptation, induction of filamentous growth) have been ob­
served which suggest the presence of photoreversibly photochrome pigments 
as photoreceptors (see B O G O R A D 1975, B J Ö R N and B J Ö R N 1980) (Table 6) . They 
have been termed phycochromes (in analogy to phytochrome), but as long as 
a correlation of distinct pigments with any of these responses is lacking the 
response oriented terms adaptachromes and phycomorphochromes ( B O G O R A D 
1975) are recommended (see B J Ö R N and BJÖRN 1980 for a discussion). The 
action spectra of the responses show a red-green photoreversibility (Table 6) . 
It should be noted that red-green photoreversible morphogenic effects were 
also described in higher plants ( K L E I N 1979) . 

From the shape and the maxima of the action spectra, biliproteins have 
been implicated as receptor pigments. SCHEIBE (1972) first isolated a biliprotein 



Table 6. Action maxima for photoreversible photoresponses in blue green algae correlated to phycomorphochromes and adaptochromes, 
for (partially) purified phycochromes and for reversible absorption changes in partially denatured phycobiliproteins 

"Green" form "Red" form References 

^Tnax Action ^max Action 

Tolypothrix tenuis, 540-550 PE formation 641-660 PC formation FLUITA and H ATTORI (1962), 
FremyeUa diphsiphon 350-387 360-463 DIAKOFF and SCHEIBE (1973), 

OHKI and FUJITA (1978), 
VOGELMANN and SCHEIBE (1978), 
H A U R Y and BOGORAD (1977) 

N os toc m use or um, 520-550 Reversion 640-650 Induction of LAZAROFF and SCHIFF (1962), 
N. commune filamentous ROBINSON and M I L L E R (1970) 

growth 
Syneehoeystis sp. 6701 540 PE formation 640 Reversion TANDEAU DE MARSAC et al. (1980) 

"Scheibe's pigment" 520 Formation P 6 5 0 650 Reversion SCHEIBE (1972), OHKI and FUJITA (1979a) 
Phycochrome a 630 Formation P 5 8 0 580 Reversion BJÖRN and BJÖRN (1976), Formation P 5 8 0 

BJÖRN (1980 a, b) 

Phycochrome b 580 Formation P 5 0 0 500 Reversion BJÖRN and BJÖRN (1976), Formation P 5 0 0 

BJÖRN (1979) 
Phycochrome c a 630, 650b BJÖRN and BJÖRN (1976), 

BJÖRN (1979) 
Phycochrome d a 650 Formation P 6 5 0 610-620 Reversion BJÖRN (1978, 1980, Formation P 6 5 0 

personal communication) 
APC 645 Formation P 5 5 5 560 Reversion O H A D e t al. (1980) 

PC, 0.5 M guanidinium 570 Formation P 6 3 0 630 Reversion OHKI and FUJITA (1979 b) 
chloride 

Formation P 6 3 0 OHKI and FUJITA (1979 b) 

APC, 0.5 M guanidinium 600 Formation P 6 5 0 650 Reversion OHKI and FUJITA (1979 b) 
chloride 

Formation P 6 5 0 

APC, pH <4 645 Formation P 5 5 5 550-560 Reversion O H A D et al. (1979, 1980) 

a A correlation has recently been indicated between the occurence of phycochrome b and d and the presence of phycoerythrocyanin in 
the respective organism (BJÖRN 1979, 1980b) 

b Probably two different forms 
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fraction from photobleached Tolypothrix tenuis, which gave photoreversible ab­
sorption difference spectra reminescent of the action spectra for chromatic adap­
tation in this species. The Björns have since characterized four different phyco-
chromes (a, b, c, d) from various organisms, and purified to a different degree 
( B J Ö R N and B J Ö R N 1976 , B J Ö R N 1978 , 1979) (Table 6) . A l l appear to be bilipro­
teins, but the purified fractions generally exhibit only absorption differences 
which do not exceed a few percent. A notable exception is phycochrome b 
in which absorption differences of about one third of its maximum absorption 
allowed an in vivo detection (BJÖRN 1979) . To establish the identity of any 
such isolated fraction with a photoreceptor proper, it may be necessary to obtain 
further information besides the spectral data. As one such possibility, a differen­
tial temperature effect on the forward and back reaction of the photoreversion 
process has been suggested recently ( O H A D et al. 1979) . 

2 8 

The need for a distinction becomes even more obvious from recent results 
on the photochemical properties of phycobiliproteins partially transformed in 
vivo ( O H K I and F U J I T A 1979 a) or partially denatured in vitro ( O H K I and F U J I T A 
1979 b, O H A D et al. 1979 , 1980) (Table 6). By this treatment, A P C and PC con­
taining the chromophore (28) obtain photoreversibly photochrome properties 
reminescent to the phycochromes. Especially the results with the isolated and 
purified biliproteins indicate that photochromicity is an inherent property of 
the bulk biliproteins and not related to a co-isolated impurity. The induced 
photochromicity of PC and A P C decreases again at more severe denaturation 
conditions. Possibly, the " tickling" of the protein loosens the interactions with 
the protein sufficiently to open a photochemical channel, while internal conver­
sion and destructive photochemistry of the pigments are still inhibited. More 
severe uncoupling (see Sect. 2.1.6 and 2.2 .4) then favors the latter processes. 
Stepwise denaturation has been observed with P C from Spirulina platensis, sug­
gesting a distinct intermediate in the unfolding process (SCHEER and K U F E R 
1977) . Similar intermediates may be present in the pigments isolated from T. 
tenuis ( O H K I and F U J I T A 1979 b) and F. diplosiphon ( O H A D et al. 1979 , 1980) . 
In summary, the function of phycochromes as photoreceptors remains doubtful 
and needs further evaluation. 
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