444 research outputs found

    Stellar Population Effects on the Inferred Photon Density at Reionization

    Get PDF
    The relationship between stellar populations and the ionizing flux with which they irradiate their surroundings has profound implications for the evolution of the intergalactic medium. We quantify the ionizing flux arising from synthetic stellar populations which incorporate the evolution of interacting binary stars. We determine that these show ionizing flux boosted by 60 per cent at 0.05 < Z < 0.3 Z_sun and a more modest 10-20 per cent at near-Solar metallicities relative to star-forming populations in which stars evolve in isolation. The relation of ionizing flux to observables such as 1500A continuum and ultraviolet spectral slope is sensitive to attributes of the stellar population including age, star formation history and initial mass function. For a galaxy forming 1 M_sun yr^{-1}, observed at > 100 Myr after the onset of star formation, we predict a production rate of photons capable of ionizing hydrogen, N_ion = 1.4 x 10^{53} s^{-1} at Z = Z_sun and 3.5 x 10^{53} s^{-1} at 0.1 Z_sun, assuming a Salpeter-like initial mass function. We evaluate the impact of these issues on the ionization of the intergalactic medium, finding that the known galaxy populations can maintain the ionization state of the Universe back to z ~ 9, assuming that their luminosity functions continue to M_UV = -10, and that constraints on the intergalactic medium at z ~ 2 - 5 can be satisfied with modest Lyman continuum photon escape fractions of 4 - 24 per cent depending on assumed metallicity.Comment: 17 pages, accepted by MNRAS. BPASS models can be found at http://bpass.auckland.ac.nz

    A star-forming galaxy at z= 5.78 in the Chandra Deep Field South

    Get PDF
    We report the discovery of a luminous z = 5.78 star-forming galaxy in the Chandra Deep Field South. This galaxy was selected as an ‘i-drop’ from the GOODS public survey imaging with the Hubble Space Telescope/Advanced Camera for Surveys (object 3 in the work of Stanway, Bunker & McMahon 2003). The large colour of (i′−z′)AB = 1.6 indicated a spectral break consistent with the Lyman α forest absorption shortward of Lyman α at z≈ 6. The galaxy is very compact (marginally resolved with ACS with a half-light radius of 0.08 arcsec, so rhl 5. Our spectroscopic redshift for this object confirms the validity of the i′-drop technique of Stanway et al. to select star-forming galaxies atz≈ 6

    Exploring the Evolution of Dust Temperature using Spectral Energy Distribution Fitting in a Large Photometric Survey

    Full text link
    Panchromatic analysis of galaxy spectral energy distributions, spanning from the ultraviolet to the far-infrared, probes not only the stellar population but also the properties of interstellar dust through its extinction and long-wavelength reemission. However little work has exploited the full power of such fitting to constrain the redshift evolution of dust temperature in galaxies. To do so, we simultaneously fit ultraviolet, optical and infrared observations of stacked galaxy subsamples at a range of stellar masses and photometric redshifts at 0<zz<5, using an energy-balance formalism. However, we find UV-emission beyond the Lyman limit in some photometric redshift selected galaxy subsamples, giving rise to the possibility of contaminated observations. We carefully define a robust, clean subsample which extends to no further than zz~2. This has consistently lower derived temperatures by 4.01.9+5.04.0^{+5.0}_{-1.9} K, relative to the full sample. We find a linear increase in dust temperature with redshift, with Td(z)=(4.8±1.5)×z+(26.2±1.5)T_d(z)=(4.8\pm1.5) \times z + (26.2\pm1.5) K. Our inferred temperature evolution is consistent with a modest rise in dust temperature with redshift, but inconsistent with some previous analyses. We also find a majority of photometrically-selected subsamples at zz>4.5 under-predict the IR emission while giving reasonable fits to the UV-optical. This could be due to a spatial disconnect in the locations of the UV and IR emission peaks, suggesting that an energy-balance formalism may not always be applicable in the distant Universe.Comment: 16 Pages, 9 Figures + appendix, accepted for publication in MNRA

    Integrin αVβ6 is a high-affinity receptor for coxsackievirus A9

    Get PDF

    Swift J1112.2-8238: A Candidate Relativistic Tidal Disruption Flare

    Get PDF
    We present observations of Swift J1112.2-8238, and identify it as a candidate relativistic tidal disruption flare (rTDF). The outburst was first detected by Swift/BAT in June 2011 as an unknown, long-lived (order of days) γ\gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z=0.89z=0.89 based on a single emission line that we interpret as the blended [OII]λ3727\lambda3727 doublet. At this redshift, the peak X/γ\gamma-ray luminosity exceeded 104710^{47} ergs s1^{-1}, while a spatially coincident optical transient source had i22i^{\prime} \sim 22 (Mg21.4_g \sim -21.4 at z=0.89z=0.89) during early observations, 20\sim 20 days after the Swift trigger. These properties place Swift J1112.2-8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late time observations, almost 3 years post-outburst, demonstrate that it has now switched off. Swift J1112.2-8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a \sim3 month period (<3%<3\% of its total lifetime as of March 2015). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.Comment: 11 pages, 5 figures, accepted for publication by MNRA

    Exploring the Cosmic Evolution of Habitability with Galaxy Merger Trees

    Get PDF
    We combine inferred galaxy properties from a semi-analytic galaxy evolution model incorporating dark matter halo merger trees with new estimates of supernova and gamma ray burst rates as a function of metallicity from stellar population synthesis models incorporating binary interactions. We use these to explore the stellar mass fraction of galaxies irradiated by energetic astrophysical transients and its evolution over cosmic time, and thus the fraction which is potentially habitable by life like our own. We find that 18 per cent of the stellar mass in the Universe is likely to have been irradiated within the last 260 Myr, with GRBs dominating that fraction. We do not see a strong dependence of irradiated stellar mass fraction on stellar mass or richness of the galaxy environment. We consider a representative merger tree as a Local Group analogue, and find that there are galaxies at all masses which have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but also that there are galaxies at all masses where the merger history and associated star formation have rendered galaxies effectively uninhabitable. This illustrates the need to consider detailed merger trees when evaluating the cosmic evolution of habitability.Comment: 11 page, 10 figures. MNRAS accepted 13th Dec 2017. Updated to match accepted version, with additional discussion of metallicity effect

    The GLARE Survey II. Faint z=6 Ly-alpha Line Emitters in the HUDF

    Get PDF
    The galaxy population at z~6 has been the subject of intense study in recent years, culminating in the Hubble Ultra Deep Field (HUDF) -- the deepest imaging survey yet. A large number of high redshift galaxy candidates have been identified within the HUDF, but until now analysis of their properties has been hampered by the difficulty of obtaining spectroscopic redshifts for these faint galaxies. Our ''Gemini Lyman-Alpha at Reionisation Era'' (GLARE) project has been designed to undertake spectroscopic follow up of faint (z'<28.5) i'-drop galaxies at z~6 in the HUDF. In a previous paper we presented preliminary results from the first 7.5 hours of data from GLARE. In this paper we detail the complete survey. We have now obtained 36 hours of spectroscopy on a single GMOS slitmask from Gemini-South, with a spectral resolution of lambda/Delta(lambda) ~ 1000. We identify five strong Lyman-alpha emitters at z>5.5, and a further nine possible line emitters with detections at lower significance. We also place tight constraints on the equivalent width of Lyman-alpha emission for a further ten i'-drop galaxies and examine the equivalent width distribution of this faint spectroscopic sample of z~6 galaxies. We find that the fraction of galaxies with little or no emission is similar to that at z~3, but that the z~6 population has a tail of sources with high rest frame equivalent widths. Possible explanations for this effect include a tendency towards stronger line emission in faint sources, which may arise from extreme youth or low metallicity in the Lyman-break population at high redshift, or possibly a top-heavy initial mass function.Comment: 14 pages. MNRAS accepte

    Binary Population and Spectral Synthesis Version 2.1: construction, observational verification and new results

    Get PDF
    The Binary Population and Spectral Synthesis (BPASS) suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which BPASS incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest BPASS model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well- constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.Comment: 69 pages, 45 figures. Accepted for publication in PASA. Accompanied by a full, documented data release at http://bpass.auckland.ac.nz and http://warwick.ac.uk/bpas

    The genome of Echovirus 11

    Get PDF

    Molecular analysis of an echovirus 3 strain isolated from an individual concurrently with appearance of islet cell and IA-2 autoantibodies

    Get PDF
    Growing evidence has implicated members of the genus Enterovirus of the family Picornaviridae in the etiology of some cases of type I diabetes (T1D). To contribute to an understanding of the molecular determinants underlying this association, we determined the complete nucleotide sequence of a strain of echovirus 3 (E3), Human enterovirus B (HEV-B) species, isolated from an individual who soon after virus isolation developed autoantibodies characteristic of T1D. The individual has remained positive for over 6 years for tyrosine phosphatase-related IA-2 protein autoantibodies and islet cell autoantibodies, indicating an ongoing autoimmune process, although he has not yet developed clinical T1D. The sequence obtained adds weight to the observation that recent enterovirus isolates differ significantly from prototype strains and provides further evidence of a role for recombination in enterovirus evolution. In common with most HEV-B species members, the isolate exhibits 2C and VP1 sequences suggested as triggers of autoimmunity through molecular mimicry. However, comparisons with the E3 prototype strain and previously reported diabetogenic and nondiabetogenic HEV-B strains do not reveal clear candidates for sequence features of PicoBank/DM1/E3 that could be associated with autoantibody appearance. This is the first time a virus strain isolated at the time of commencement of beta-cell damage has been analyzed and is an invaluable addition to enterovirus strains isolated previously at the onset of T1D in the search for specific molecular features which could be associated with diabetes induction
    corecore