15 research outputs found

    Nonlinear theory of mirror instability near threshold

    Full text link
    An asymptotic model based on a reductive perturbative expansion of the drift kinetic and the Maxwell equations is used to demonstrate that, near the instability threshold, the nonlinear dynamics of mirror modes in a magnetized plasma with anisotropic ion temperatures involves a subcritical bifurcation,leading to the formation of small-scale structures with amplitudes comparable with the ambient magnetic field

    Activating mutations in the MAP‐kinase pathway define non‐ossifying fibroma of bone

    No full text
    Non‐ossifying fibroma (NOF), which occasionally results in pathologic fracture, is considered the most common benign and self‐limiting lesion of the growing skeleton. By DNA sequencing we have identified hotspot KRAS, FGFR1 and NF1 mutations in 48 of 59 patients (81.4%) with NOF, at allele frequencies ranging from 0.04 to 0.61. Our findings define NOF as a genetically driven neoplasm caused in most cases by activated MAP‐kinase signalling. Interestingly, this driving force either diminishes over time or at least is not sufficient to prevent autonomous regression and resolution. Beyond its contribution to a better understanding of the molecular pathogenesis of NOF, this study adds another benign lesion to the spectrum of KRAS‐ and MAP‐kinase signalling‐driven tumours

    Supplementary Material for: Loss of Chromosome 18 in Neuroendocrine Tumors of the Small Intestine: The Enigma Remains

    No full text
    <p><b><i>Background/Aims:</i></b> Neuroendocrine tumors of the small intestine (SI-NETs) exhibit an increasing incidence and high mortality rate. Until now, no fundamental molecular event has been linked to the tumorigenesis and progression of these tumors. Only the loss of chromosome 18 (Chr18) has been shown in up to two thirds of SI-NETs, whereby the significance of this alteration is still not understood. We therefore performed the first comprehensive study to identify Chr18-related events at the genetic, epigenetic and gene/protein expression levels. <b><i>Methods:</i></b> We did expression analysis of all seven putative Chr18-related tumor suppressors by quantitative real-time PCR (qRT-PCR), Western blot and immunohistochemistry. Next-generation exome sequencing and SNP array analysis were performed with five SI-NETs with (partial) loss of Chr18. Finally, we analyzed all microRNAs (miRNAs) located on Chr18 by qRT-PCR, comparing Chr18+/- and Chr18+/+ SI-NETs. <b><i>Results:</i></b> Only DCC (deleted in colorectal cancer) revealed loss of/greatly reduced expression in 6/21 cases (29%). No relevant loss of SMAD2, SMAD4, elongin A3 and CABLES was detected. PMAIP1 and maspin were absent at the protein level. Next-generation sequencing did not reveal relevant recurrent somatic mutations on Chr18 either in an exploratory cohort of five SI-NETs, or in a validation cohort (n = 30). SNP array analysis showed no additional losses. The quantitative analysis of all 27 Chr18-related miRNAs revealed no difference in expression between Chr18+/- and Chr18+/+ SI-NETs. <b><i>Conclusion:</i></b> DCC seems to be the only Chr18-related tumor suppressor affected by the monoallelic loss of Chr18 resulting in a loss of DCC protein expression in one third of SI-NETs. No additional genetic or epigenetic alterations were present on Chr18.</p

    Scientific objectives of the DYNAMO mission

    No full text
    International audienceDYNAMO is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/ CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for DYNAMO of 120–130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Additional data on the internal structure will be obtained by mapping the electric conductivity. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere and water from the planet
    corecore