4,711 research outputs found

    Magnetoresistance and transistor-like behavior of double quantum dots connected to ferromagnetic and superconductor leads

    Get PDF
    The electric current and the magnetoresistance effect are studied in a double quantum-dot system, where one of the dots QDa is coupled to two ferromagnetic electrodes (F1,F2), while the second QDb is connected to a superconductor S. For energy scales within the superconductor gap, electric conduction is allowed by Andreev reflection processes. Due to the presence of two ferromagnetic leads, non-local crossed Andreev reflections are possible. We found that the magnetoresistance sign can be changed by tuning the external potential applied to the ferromagnets. In addition, it is possible to control the current of the first ferromagnet (F1) through the potential applied to the second one (F2). We have also included intradot interaction and gate voltages at each quantum dot and analyzed their influence through a mean field approximation. The interaction reduces the current amplitudes with respect to the non-interacting case, but the switching effect still remains as a manifestation of quantum coherence, in scales of the order of the superconductor coherence length.Comment: Revised versio

    Resummation of infrared divergences in the free-energy of spin-two fields

    Full text link
    We derive a closed form expression for the sum of all the infrared divergent contributions to the free-energy of a gas of gravitons. An important ingredient of our calculation is the use of a gauge fixing procedure such that the graviton propagator becomes both traceless and transverse. This has been shown to be possible, in a previous work, using a general gauge fixing procedure, in the context of the lowest order expansion of the Einstein-Hilbert action, describing non-interacting spin two fields. In order to encompass the problems involving thermal loops, such as the resummation of the free-energy, in the present work, we have extended this procedure to the situations when the interactions are taken into account.Comment: 12 pages, 25 figure

    Andreev tunneling through a double quantum-dot system coupled to a ferromagnet and a superconductor: effects of mean field electronic correlations

    Full text link
    We study the transport properties of a hybrid nanostructure composed of a ferromagnet, two quantum dots, and a superconductor connected in series. By using the non-equilibrium Green's function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev reflection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. In the presence of interactions, Coulomb blockade tend to localized the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. This mechanism to control the current may be of importance in technological applications.Comment: 12 pages, 11 figure

    Tratamento cirúrgico das lesões traumáticas do plexo braquial em adultos: uma visão geral

    Get PDF
    Traumatic injuries to the brachial plexus in adults are severely debilitating. They generally affect young individuals. A thorough understanding of the anatomy, clinical evaluation, imaging and electrodiagnostic assessments, treatment options and proper timing of surgical interventions will enable nerve surgeons to offer optimal care to patients. Advances in microsurgical technique have improved the outcome for many of these patients. The treatment options offer patients with brachial plexus injuries the possibility of achieving elbow flexion, shoulder stability with limited abduction and the hope of limited but potentially useful hand function.As lesões traumáticas do plexo braquial em adultos são severamente debilitantes e, em geral, afetam indivíduos jovens. Uma ampla compreensão da anatomia, da avaliação clínica, dos estudos eletrodiagnósticos e por imagem, das opções de tratamento e do momento apropriado para o tratamento cirúrgico irá permitir que o cirurgião de nervos ofereça o tratamento ideal ao paciente. Os avanços na técnica microcirúrgica melhoraram os resultados para muitos desses pacientes. As opções de tratamento oferecem aos pacientes com lesões do plexo braquial a possibilidade de obter flexão do cotovelo, estabilidade do ombro com abdução limitada e a esperança de função limitada mas potencialmente útil da mão

    Estudo da influência de seqüências polipeptídicas e de códons na determinação da estrutura secundária de proteínas.

    Get PDF
    O propósito desse trabalho foi descrever e quantificar os casos de polipeptídicos idênticos em diferentes estruturas secundárias, encontrados em banco de dados de estrutura: Protein Data Bank (PDB).bitstream/CNPTIA/9901/1/comuntec42.pdfAcesso em: 30 maio 2008

    Possible chiral phase transition in two-dimensional solid 3^3He

    Full text link
    We study a spin system with two- and four-spin exchange interactions on the triangular lattice, which is a possible model for the nuclear magnetism of solid 3^3He layers. It is found that a novel spin structure with scalar chiral order appears if the four-spin interaction is dominant. Ground-state properties are studied using the spin-wave approximation. A phase transition concerning the scalar chirality occurs at a finite temperature, even though the dimensionality of the system is two and the interaction has isotropic spin symmetry. Critical properties of this transition are studied with Monte Carlo simulations in the classical limit.Comment: 4 pages, Revtex, 4 figures, to appear in Phys.Rev.Let

    Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates

    Get PDF
    In recent years, biopolymers have been attracting the attention of researchers and special-ists from different fields, including biotechnology, material science, engineering, and medicine. The reason is the possibility of combining sustainability with scientific and technological progress. This is an extremely broad research topic, and a distinction has to be made among different classes and types of biopolymers. Polyhydroxyalkanoate (PHA) is a particular family of polyesters, synthetized by microorganisms under unbalanced growth conditions, making them both bio-based and biodegradable polymers with a thermoplastic behavior. Recently, PHAs were used more intensively in biomedical applications because of their tunable mechanical properties, cytocompatibility, adhesion for cells, and controllable biodegradability. Similarly, the 3D-printing technologies show increasing potential in this particular field of application, due to their advantages in tailor-made design, rapid prototyping, and manufacturing of complex structures. In this review, first, the synthesis and the production of PHAs are described, and different production techniques of medical implants are compared. Then, an overview is given on the most recent and relevant medical applications of PHA for drug delivery, vessel stenting, and tissue engineering. A special focus is reserved for the inno-vations brought by the introduction of additive manufacturing in this field, as compared to the traditional techniques. All of these advances are expected to have important scientific and commer-cial applications in the near future
    corecore