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Abstract

This paper proposes a model to predict recessions that accounts for non-linearity and a

structural break when the spread between long- and short-term interest rates is the leading

indicator. Estimation and model selection procedures allow to estimate and to identify time-

varying non-linearity in a VAR. The structural break threshold VAR (SBTVAR) predicts

better the timing of recessions than models with constant threshold or with only a break.

Using real-time data, the SBTVAR with spread as leading indicator is able to anticipate

correctly the timing of the 2001 recession.
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1 Introduction

Economic forecasters do not usually enjoy a good reputation when trying to predict a possible

US recession: “the dismal scientists have a dismal record in predicting recessions”(Don’t Men-

tion the R-word, 2001 ). The problem is that recessions are relatively rare events with potential

strong negative consequences for individuals as well as businesses. The main contribution of

this paper is to propose a model to predict recessions that accounts for non-linearity and a

structural break when the spread between long- and short-term interest rates is the leading

indicator. Estimation and model selection procedures allow to estimate and to identify time-

varying non-linearity in a VAR. The model with time-varying thresholds predicts better the

timing of recessions than models with constant threshold or with only a break.

The literature presents evidence that the spread, which represents the term structure of

interest rates, is a reliable predictor of output growth (Estrella and Hardouvelis, 1991; Hamilton

and Kim, 2002) and the surveys of Berk (1998) and Stock and Watson (2001)). The information

contained in the spread reflects not only monetary policy but future expected short rates and

changes in the risk premium (Hamilton and Kim, 2002). In fact, the spread keeps its predictive

power when other indicators of monetary policy (Anderson and Vahid, 2001) and oil prices

(Hamilton and Kim, 2002) are included in a regression to explain output growth. The spread

is also a reliable predictor of the probability of recession (Lahiri and Wang, 1996; Estrella and

Mishkin, 1998).

However, Haubrich and Dombrosky (1996), Dotsey (1998) and Stock and Watson (2001)

report that the predictive power of the spread between long- and short-term interest rates has

decreased after 1985. The failure of the indicator index of Stock and Watson (1989) to predict

the 1990-91 recession has been attributed to the fact that the index relied heavily on the spread

(Dotsey, 1998). In contrast, employing Markov-switching models to obtain the probability of

recession, Lahiri and Wang (1996) showed that the spread managed to predict the last recession.

Likewise, Dueker (1997) and Estrella and Mishkin (1998), using probit, demonstrate that the

spread is still better than other leading indicators in predicting recessions for the US. The tests

presented by Estrella et al. (2003) support the view that while there is no instability in the

ability of the spread to predict recessions, but the ability of the spread to predict the economic

growth is unstable. Recently, Chauvet and Potter (2002) questioned these results with findings

of parameter instability in probit models.

The literature also presents evidence of non-linearities in models that use the spread to

predict output growth (Galbraith and Tkacz, 2000; Anderson and Vahid, 2001). The inclusion
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of non-linearities improves the accuracy of predicting the probability of recession (Anderson and

Vahid, 2001), while large spreads do not predict strong growth (Galbraith and Tkacz, 2000).

Regarding changes in the output growth series, an important stylized fact is that the vari-

ability of output growth decreased after 1984 (Kim and Nelson, 1999; McConnell and Perez-

Quiros, 2000). Regarding interest rates, Watson (1999) suggests that the variability of the US

long-term interest rate has been increasing while the short-term interest rate is smoothed by the

monetary authority. However, the results of the tests applied by Sensier and Van Dijk (2001)

indicate that while there is evidence of structural break in short- and long-term interest rates,

the evidence of a structural break in their spread is not strong.

Therefore, the literature suggests that a linear model between output growth and spread

is not a proper representation of the dynamic responses between these variables because of

parameter instability (Estrella et al., 2003; Stock and Watson, 2001), non-linearities (Galbraith

and Tkacz, 2000; Anderson and Vahid, 2001) and changes in the variability of the output growth

(Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000). The structural break threshold

VAR (SBTVAR) proposed in this paper is able to account for these characteristics and can be

employed to generate more precise predictions of recessions.

This paper extends some previous results published in the literature in two issues. Structural

breaks are necessary to time correctly direction-of-change predictions not only in linear (Pesaran

and Timmermann, 2004) but also in non-linear models. The spread leads the 2001 recession

(Stock and Watson, 2003) but the model with threshold and structural break is more efficient

in extracting the information from the spread than a simple VAR is.

The remaining of this paper is organised as follows. Structural break threshold VARs

(SBTVAR) are presented in section 2 that also includes estimation and specification procedures.

In addition, the SBTVAR is applied to model the output growth and the spread and the

estimates are compared with more restrictive specifications. Section 3 presents the definitions

of recession and the loss function employed to evaluate forecasting performance. The evaluation

of the in-sample and real-time performance in event forecasting of VARs, threshold VARs,

structural break VARs and SBTVARs are also presented in section 3. Section 4 analyses real-

time forecasts for the 2001 recession and compares the obtained results with other forecast

evaluations presented in the literature. Section 5 summarises the main findings of this paper

and concludes them.
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2 Structural Break Threshold VAR

Threshold VARs are piecewise linear models with different autoregressive matrices in each

regime, which is determined by a transition variable (one of the endogenous variables), a delay

and a threshold (Tsay, 1998). Structural break models also divide the sample into two regimes

but they are determined by a break-point and are not recurrent, allowing different dynamics

before and after the break. Although non-linear models can capture some characteristics of

structural break models (Koop and Potter, 2000; Koop and Potter, 2001; Carrasco, 2002), it

may be the case that the break also implies changes in the parameters that determine the

non-linearity. Univariate time-varying smooth transition models have been proposed by Lund-

bergh et al. (2003) and they have been applied to capture changes in seasonality of industrial

production by Van Dijk et al. (2003). In this section, a VAR with threshold non-linearity and

a structural break is proposed. In contrast with time-varying smooth transition models, struc-

tural break threshold models characterise abrupt changes from one regime to another. After

discussing how to estimate and to verify whether there are thresholds and breaks in the data,

the model is applied to US output growth and spread. The robustness of the estimates of the

empirical exercise is verified by observing recursive estimates based on real-time data.

Define xt as a m×1 vector of m endogenous variables xt = (x1t, x2t, ..., xmt)
0 and define the

m× (mp+1) matrix xt−1 = (1,xt−1, ...,xt−p) where p is the autoregressive order, a structural

break threshold VAR (SBTVAR) can be written as:

xt = {[(xt−1β1)I1,t−d1(r1) + (xt−1β2)(1− I1,t−d(r1))]It(τ )}+
{[(xt−1β3)I2,t−d2(r2) + (xt−1β4)(1− I2,t−d(r2))](1− It(τ ))}+ ut

where Ii,t−di(ri) is an indicator function that depends on a transition variable z, on a threshold

ri and on a delay di: Ii,t−di(ri) = 1(zt−di ≤ ri); and It(τ) is a indicator function that depends

on a break-point τ : It(τ) = 1(t ≤ τ ). βi are (mp + 1) ×m matrices of parameters. ut is the

m×1 vector of disturbances that is assumed to have a mean equal to zero and a constant m×m

covariance matrix Σ. This supposition is easily substituted by constant variance conditional on

the regime.

The SBTVAR has one threshold VAR (TVAR) in each sub-sample determined by the break-

point. This means that the break affects also the parameters of the indicator functions that

determines the regimes. Although it is possible to write a nested specification using logistic

functions, the smooth analogous estimated by Lundbergh et al. (2003) does not consider changes
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in the transition function following the break. Allowing the restriction that r1 = r2, given that

d1 = d2, the parameters of the dynamics are allowed to change in each sub-sample but not

the parameters of the regime-switching function. The model with this restriction is called

SBTVARc. If there is no threshold given that there is a break-point, a structural break VAR

(SBVAR) is written as:

xt = (xt−1β1)It(τ ) + (xt−1β2)(1− It(τ )) + ut.

In contrast if there is a threshold but no structural break, one has a threshold VAR (TVAR):

xt = (xt−1β1)It−d(r) + (xt−1β2)(1− It−d(r)) + ut.

Finally, if there is no break or threshold, the last two specifications are simplified to a VAR.

2.1 Conditional Means based on Simulated DGPs

An interesting application of time-varying and threshold VARs is to capture changes in the

predictive power of a variable x2t on another variable x1t. In this subsection, data from nested

but different DGPs are simulated to observe the implications of a TVAR, SBVAR, SBTVARc

and SBTVAR on the conditional mean E(x1t|x2t−1). The DGPs are described in Table 1. x2t
causes (Granger sense) x1t in the lower regime of the TVAR, and in the first sub-sample of

the SBVAR. This causality is also present in the lower regime of the first sub-sample of the

SBTVARc and of the SBTVAR and with less intensity in this same regime of the second

sub-sample. Note that SBTVARc is a restricted version of the SBTVAR because it has the

threshold is the same across sub-samples. Therefore, the SBTVAR captures causality from x2t

to x1t depending on the size of x2t−1 and also on the time period.

Figure 1 presents the conditional mean (E(x2t|x1t−1)) estimated by local linear regression
using 10000 simulated values from each DGP assuming that the disturbances are normally

distributed. Comparing the second, fourth and fifth panel, one can verify that the model with

changing non-linearity has a smoother transition from one regime to another compared with

the model with only the threshold. The SBVAR implies a different dynamics: it was possible

to observe in the scatter plot a clear bifurcation for large values of x2t−1. An interesting result

of Figure 1 is that for values of x2t−1 between 1.75 and 3.25, around the TVAR’s threshold of

2.5, it is possible to verify differences in the conditional means across models. These differences

support the idea of building a modelling procedure to discriminate across these models. In
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addition, differences in conditional mean may matter for forecasting.

2.2 Estimation

Two methods have been employed to estimate TVARs in the literature: conditional least squares

(Tsay, 1998) and maximum likelihood (Hansen and Seo, 2002). Tsay (1998) shows that con-

ditional least squares are consistent estimators of the autoregressive coefficients, the delay and

the threshold, and the covariance matrix. The suggested method employs a grid of values

for the threshold (and delay) and the chosen threshold is the one that minimises the sum of

squared residuals S(r) over the interval [rl, ru] where S(r) = T ∗ traceΣ̂(r), where T is the

number of observations and Σ̂(r) is the estimated covariance matrix of the residuals for a given

threshold value. This means that, conditional on each possible threshold, a VAR is estimated

by least squares and the trace of the covariance matrix is computed. The estimated threshold

is the one that minimises the objective function. The limits of the grid for the threshold are

defined based on the rule that at least 100π% of the observations must be in each regime,

where 0 < π < 1. Similar approach is employed to estimate unknown structural breaks. Values

of π that are commonly found in the literature are .10 (Clements and Galvão, 2004) and .15

(Andrews, 1993).

Without formal proofs of consistency, Hansen and Seo (2002) suggest to use the maximum

likelihood approach to estimate a threshold VAR with cointegration. The maximum likelihood

estimator is based on the assumption that the errors are gaussian. In practice, the estimation

algorithm is similar to the one of conditional least squares, the main difference is that the

objective function to be minimized is the log(det(Σ̂(r))).

Both approaches can be employed to estimate the SBTVAR. Supposing that the delays,

the autoregressive order and the transition variable are known, the matrices β1, β2, β3, β4 can

be obtained by OLS given values of r1, r2 and τ . This means that one can concentrate the

residual sum of squared errors and the likelihood function with respect to the thresholds and

the break-point. Grids of possible values of thresholds and break-point can be defined supposing

that at least 100π% of the observations are available to estimate the autoregressive coefficients

in each regime. For each possible combination of values inside the grids, one can compute

β̂1, β̂2, β̂3, β̂4 by OLS. Based these estimates, the residuals ût can be obtained and saved in

the T ×m matrix û. Using the residuals, the covariance matrix is consistently computed as
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Σ̂(r1, r2, τ) = (û0û)/T. The estimator of conditional least squares (CLS) is obtained by

r̂1, r̂2, τ̂ = min
rl≤r1≤ru
rl≤r2≤ru
τ l≤τ≤τu

T ∗ trace(Σ̂(r1, r2, τ)).

Similarly the estimator of maximum likelihood (ML):

r̂1, r̂2, τ̂ = min
rl≤r1≤ru
rl≤r2≤ru
τ l≤τ≤τu

log(det(Σ̂(r1, r2, τ))).

The maximum likelihood estimator is built assuming that the covariance matrices are the

same for each regime. This assumption may not hold when applying to macroeconomic data

with time-varying variances, but the estimator can be modified to allow regime-switching vari-

ances. SBTVAR has 4 regimes (2 regimes in each sub-sample), so that the conditional variance

matrix Σ̂i(r1, r2, τ) is computed with the Ti observations of ût of regime i. The maximum

likelihood estimator that allows changes in the regime-dependent variances (HML) is written

as:

r̂1, r̂2, τ̂ = min
rl≤r1≤ru
rl≤r2≤ru
τ l≤τ≤τu

 T1
2 log(det(Σ̂1(r1, r2, τ))) +

T2
2 log(det(Σ̂2(r1, r2, τ)))+

T3
2 log(det(Σ̂3(r1, r2, τ))) +

T4
2 log(det(Σ̂4(r1, r2, τ)))

 .

Similarly, CLS, ML and HML estimators can be derived to estimate SBTVARc, SBVAR and

TVAR. The comparative unbiasedness and efficiency in finite samples of those three estimators

are investigated using a Monte Carlo exercise.

The properties of the CLS, ML and HML are evaluated for two sample sizes: T = 200

and T = 400. The size of the sample in the empirical part is of around 200. In addition,

different suppositions about the variance matrix of the disturbances are made: constant variance

and variance changing with regimes; disturbances independent across equations or with some

correlation. The DGPs are the same employed in the last section, described in Table 1.

Table 2 presents the mean of the estimates, their standard errors and average bias for

each assumption on the covariance matrix, for each estimation method and for each DGP

with 500 replications. The estimators are computed conditional on having at least 15% of the

observations in each regime and at least 30% of the observations in each sub-sample. The

results show bias in the estimation of the break-point τ̂ of the SBTVAR using CLS and ML

when the disturbances’ variance changes across regimes. Therefore, if there is any suspicion of

possible changes in the variance across regimes in the SBTVAR, the HML is recommended. In

the remaining of this paper, all the specifications (except the VAR) are estimated using the
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HML.

2.3 Choosing between VAR, TVAR, SBVAR, SBTVARc and SBTVAR

Even if one can estimate SBTVARs, it is not clear whether it is necessary to have time-varying

thresholds to capture the dynamic structure of the data. Tests for a threshold in a SBVAR or

for a break-point in a TVAR are complicated because of the discontinuity of the changes and the

presence of nuisance parameters. The non-standard distribution of the supLM and supWald

statistics for testing for unknown breaks and thresholds have been derived, respectively, by

Andrews (1993) and Hansen (1996). In this paper, a convenient specification method is proposed

based on the asymptotic bounds for LM and Wald tests derived by Altissimo and Corradi

(2002). The authors show how to compute bounds based on the law of the iterated logarithm

such that a decision rule is built for the rejection of the null. Altissimo and Corradi show that

the decision rule is effective to choose correctly between a linear and a threshold model. In this

section, selection criteria based on the bounds of supLM and supWald statistics are employed to

discriminate between VAR, TVAR, SBVAR, SBTVARc and SBTVAR in a specific to general

approach. The ability of this approach to discriminate between VAR specifications in finite

samples is evaluated with a simulation exercise.

The decision rule for model selection employed in this paper uses asymptotic bounds

(1/2 ln(ln(T ))) and the maximum value of a Wald and a LM statistic over a grid of possi-

ble values for the nuisance parameter as proposed by Altissimo and Corradi (2002). The Wald

and the LM statistics are computed using the sum of squared residuals (SSR) under the null

and the alternative:

W (θ2) = n

Ã
SSR(θ̂1)− SSR(θ2)

SSR(θ2)

!
;LM(θ2) = n

Ã
SSR(θ̂1)− SSR(θ2)

SSR(θ̂1)

!
.

The vector θ1 has parameters such as thresholds and breaks of the model under the null and θ2

has those parameters of the models under the alternative. The rule that ensures that type I and

type II errors are asymptotically zero is that the model under the alternative must be chosen

if the bounded supθL2≤θ2≤θU2 W (θ2) (or supθL2≤θ2≤θU2 LM(θ2)) is larger than one. Specifically,

choose model under alternative if BWald =

 1

2 ln(ln(T ))

"
sup

θL2≤θ2≤θU2
W (θ2)

#1/2 > 1.

Similarly, the rule can also be written employing the supθL2≤θ2≤θU2 LM(θ2) statistic.

Based on the results of Lundbergh et al. (2003) that a specific-to-general approach can
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specify carefully time-varying smooth transition models, a specific-to-general approach based

on the asymptotic decision rules is employed to choose between a VAR, a TVAR, a SBVAR, a

SBTVARc and a SBTVAR. In this model selection procedure, delays, transition variables and

autoregressive order are assumed to be known and are the same for all specifications. The steps

for choosing between those models are:

• (1) Estimate a TVAR and a SBVAR using the HML estimator described last section.

Using the sum of squared residuals of those models and the one of a VAR, compute

BWald (BLM). If none of the alternative hypothesis is rejected using the decision rule,

the procedure finishes and the VAR is chosen. If at least one of the statistics suggests

rejection of the VAR, then one of the next two step follows.

• (2.1) If BWald (BLM) with TVAR under alternative is larger than BWald (BLM) with

SBVAR under the alternative, this step verifies whether the inclusion of a break improves

the TVAR. This is done using two different alternative models estimated using HML:

SBTVAR and SBTVARc. After computing BWald (BLM) statistics using the TVAR

as restricted model, three models can be chosen: (a) if both statistics are smaller than

1, then the TVAR is chosen; (b) if the statistic with SBTVARc under the alternative is

larger than the statistic with SBTVAR under the alternative, then SBTVARc is chosen;

(c) if the statistic with SBTVAR under the alternative is larger than the SBTVARc, then

SBTVAR is chosen.

• (2.2) If BWald (BLM) with SBVAR under alternative is larger than BWald (BLM)

with TVAR under the alternative, this step verifies whether the inclusion of a threshold

improves the SBVAR using estimated SBTVAR and SBTVARc under alternative. After

computing BWald (BLM) statistics using the SBVAR as restricted model, three models

can be chosen: (a) if both statistics are smaller than 1, then the SBVAR is chosen; (b) if the

statistic with SBTVARc under the alternative is larger than the statistic with SBTVAR

under the alternative, then SBTVARc is chosen; (c) if the statistic with SBTVAR under

the alternative is larger than the SBTVARc, then SBTVAR is chosen.

Therefore, two bounded statistics are computed in each step, but step 2 can be avoided. The

computation of the statistics requires the estimation of models under the null and alternative.

Similar approach is employed by Gonzalo and Pitarakis (2002) using information criteria to

define the number of thresholds (regimes) in a threshold autoregressive model.

The investigation of the finite sample properties of this model selection procedure in dis-

criminating between a VAR, a TVAR, a SBVAR, a SBTVARc and a SBTVAR is done with a
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simulation exercise. The DGPs presented in Table 1 are employed. The frequency of selection

of each model in 1000 replications using a BWald and BLM statistic are presented in Table 3.

The data is simulated from the DGPs drawing from a normal distribution under assumptions

of constant variance and of changing variance. The size of samples of simulated data are 200

and 400.

The selection frequencies presented in Table 3 show that the modelling strategy is successful

in discriminating between VARs, TVARs and SBVARs. Because changes in the thresholds

across sub-samples do not imply in the estimation of extra autoregressive parameters, the

selection rule is generally not able to discriminate between SBTVARc and SBTVAR. As the

sample increases, the selection rule discriminates between TVARs and SBTVARs when the

SBTVAR is the DGP. When the TVAR is the DGP, the selection rule chooses the SBTVAR

relatively frequent. There are no large differences in the selection frequencies on employing

either the LM or the Wald statistics (similar to the results of Altissimo and Corradi (2002)).

Heteroscedasticity reduces the power of the selection rule on discriminating between TVAR and

SBTVAR, but it does not affect significantly the selection frequencies of other models.

These selection frequencies are not worse than previous papers that have proposed methods

to discriminate between linear and non-linear specifications (Gonzalo and Pitarakis (2002) and

Strikholm and Teräsvirta (2003)). Figure 1 helps to understand why it is hard to discriminate

between these nested versions of TVAR and SBTVAR in small samples: their main difference

is in the smoothness of the transition when changing from causality to non-causality. Yet the

distinction between these models increases with the sample size.

Therefore, the modelling selection scheme based on the BWald (BLM) contributes

to the literature on discriminating between time-varying and recurrent regime behaviour

(Carrasco, 2002) because it is successfull in identifying either a threshold or a break in the

data. In addition, the scheme is able to successfully discriminate between the SBTVAR and

more restrictive specifications in larger samples (400 observations) even under regime-dependent

heteroscedasticity. This scheme is applied to US data in the next subsection.

2.4 VAR, TVAR, SBVAR and SBTVARs to model US output growth and spread

The application of the SBTVAR to US output growth and the spread between the long-

and the short-term interest rate arises from the evidence in the literature that the spread

predicts negative output growth but it is not useful when there is a boom (Galbraith and

Tkacz, 2000) jointly with the evidence that the spread could have lost its predictive power

(Dotsey, 1998) and the evidence that the volatility of output growth has decreased (McConnell
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and Perez-Quiros, 2000). The quarterly growth rate of output yt employed in this subsec-

tion is computed from the 2003:Q4 vintage of the real output from 1953:Q2 until 2002:Q4,

obtained from www.phil.frb.org/econ/forecast/reaindex.html. The spread St is computed us-

ing the interest rates of 10-year Treasury bonds and 3-month Treasury bills, obtained from

www.stls.frb.org/fred. The quarterly frequency is obtained by averaging the monthly spread

over the quarter.

The estimates (by HML) of all the possible alternative hypotheses of the modelling procedure

of last subsection are presented in Table 4. The 90% confidence intervals for the thresholds and

the break-point are computed applying bootstrapping1. The estimates are obtained assuming

at least 15% of the observations in each regime and at least 30% of the observations in each

sub-sample, and at least 20% of the observations of each sub-sample in each regime in case of

SBTVARs. All models are estimated for the same autoregressive order — p = 3 — that has been

chosen with the Schwarz information criteria applied to the VAR. The delay is estimated using

an additional loop in the grid search assuming that dl = 1 and du = 4.

The information criteria (SIC) suggests gains from the presence of a break-point and a

threshold, but the model with smaller SIC is the TVAR. The SBTVAR implies a reduction of

4% of the SIC compared with the SBTVARc with only the estimation of one more parameter.

The thresholds of the TVAR and the SBTVARc have similar values, and their value is not

statistically different from the r1 of the SBTVAR. The break-points are statistically different

across the models, but the break-point of the SBVAR and the SBTVAR are not far from each

other: 1981:1 and 1985:2. The 1985 break implies that the estimated variance of the output

growth equation after the break is 1/3 of the variance before the break. Similar sized variance

reduction is also observed in the SBTVAR estimates but not in the SBTVARc. A break around

1985 is associated with the decrease in the volatility of output growth (McConnell and Perez-

Quiros, 2000). In addition, Chauvet and Potter (2002) show that the presence of break in 1985

improves forecasts using the spread as leading indicator and the probit as a filter.

Table 5 presents the BWald and BLM for all possible tests of the two-step model selection

procedure. In the first step, the TVAR is chosen and in the second step the SBTVAR. This

results indicate that models with time-varying thresholds improve significantly over models with

constant thresholds and that the SBTVAR specification is chosen by the data. The table also

presents BWald and BLM to verify the need of an extra break in a SBVAR and of an extra

1Data is simulated from the estimated model by bootstrapping from the residuals. The simulated data is
employed to estimate thresholds and/or break (by HML together with the autoregressive parameters). The
procedure is repeated 500 times and the limits of the 90% empirical interval are computed.
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threshold in a TVAR. There is evidence of a second break, but this model is not employed in

the forecasting evaluation because a careful analysis shows that this break is associated with

the effect of the 1979-1982 monetary policy in the dynamics of the spread and it does not affect

the predictive performance of the spread.

Summarising, the results suggest that there is changing non-linearity in the dynamics be-

tween US output growth and the spread. The SBTVAR captures a significantly increase in the

threshold value after a break in 1981. This implies that the ability of the spread in predicting

output growth has changed, but it will be checked whether this means that the spread is not a

reasonable leading indicator in a forecasting exercise in section 3.

2.4.1 Sensibility to new information: Recursive Estimation with Real-time data

The SBTVAR is able to capture interesting features of the dynamic relationship between the

spread and the output-growth. However, if the purpose of the modeler is to use it for forecasting,

the parameters must be robust to the arrival of new information. In this section, real-time

output data is employed to recursively estimate the SBTVAR.

The first sample used to estimate the parameters is from 1953:Q2 to 1985:Q4. This sample

uses all the information available until 1986:Q1. At each new point in time, the models are

re-estimated, using the newer data vintage. This new vintage may include large revisions of

the current and previous data. Two major data revisions are discussed in Croushore and Stark

(2001): from GNP to GDP in 1992 and changes in the chain-weighting in 1996. There is also

a major revision in 1999:Q4 and 2000:Q1 because of changes in the national account tables. In

the period of these revisions, the data availability shortened and starts in 1959:Q1. Thus it is

expected larger changes in the parameters in those periods.

For comparative purposes, a TVAR, a SBVAR and a SBTVARc are also estimated recur-

sively. Thresholds, break-point and delays estimated with information available including the

data indicated are presented in Figure 2. The revisions have impact in all estimates. The

delay parameters are stable over time, although some instability is found in the delay of the

SBTVARc. The break-point of the SBVAR has three main values: around 1979:4 with data

until 1991, around 1973:1 with data from 1991 to 1997, and around 1985 with data after 1998.

The breaks could be associated with the productive changes in beginning of the 1970´s, the

monetary policy regime change in 1979 and with the decreasing volatility in the beginning of

the 1990´s. This stability is not found in the estimation of the break-point of the SBTVAR

with data vintages after 1997. The estimates of break-points of these newer vintages oscillate

between 1985 and 1972. This oscillation of break-points between the early 1970´s changes in
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productivity and the 1980´s decrease in variability of output growth is also found by Chauvet

and Potter (2002). Similar behaviour is found in the estimation of the thresholds: stability

until 1996 for all the models and instability in the estimation of the second threshold of the

SBTVAR model after that.

Summarising, there is some instability in the definition of the break-point of the SBTVAR

after 1997. This is not captured by the small 90% confidence interval presented earlier because

when using all the information the break-point is well identified. This sensibility may affect

out-of-sample forecasts in real-time.

3 Predicting Recessions

This section evaluates whether the proposed model, SBTVAR, is able to extract information

from a leading indicator - the spread - in such a way that it improves forecasts of recessions.

3.1 Definition of Recession

Recessions are not directly observable in the data, but recessive periods can be identified based

on simple rules applied to series that represent the aggregate economy. The rules employed in

this paper are based on those employed in the algorithms to identify turning points of classical

business cycles. The advantage of employing simple rules to classify recessions is that the defined

event can also be identified in forecast sequences, implying that probabilities of recession can

be computed.

In this paper, two definitions of recessions are employed. The first definition of recession

is: two consecutive quarters of negative growth in the next five quarters (Fair, 1993). Thus, I

state that the quarter t is in recession, so that Rt = 1, when there are two consecutive quarters

of negative growth in the window from t to t + 4. This definition of recession anticipates the

NBER dates, so that the ability of predicting this event means being able to anticipate NBER

turning points.

The second definition is based on a rule for identification of turning points: there is a

recession at t if either (yt−1 < 0 and yt < 0) or (yt < 0 and yt+1 < 0). The definition of this

event is relevant in real-time because normally only yt−1 is known and it is subjected to revision.

This is a rare event that occurs only in 10% of the quarters of the sample. An advantage of the

definition of this event is that identifies the same quarters in recession as the NBER with data

after 1983, which comprises the out-of-sample period employed in the forecasting evaluation.

The computation of the predictive probabilities of these events using estimated VARs em-
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ploys simulation of forecast sequences in which the events are identified in such a way that

the predictive probability is the proportion of occurrences of the event after simulating a large

number of sequences (Anderson and Vahid, 2001). The complete procedure is described in the

appendix.

3.2 Measuring Loss from Event Forecasting

A forecaster has to decide whether to predict a recession or not based on a model that generates

probabilities of recessions Pt = Pr[recessiont|Ωt−1] where Ωt−1 is the set of information available
at t− 1. The gain obtained by correctly predicting a recession is L(h) and the loss of wrongly
predicting a recession is L(fa). Thus, the loss function of the individual is L = L(fa)− L(h).

The individual will identify a recession when Pt ≥ ct, therefore the decision of calling a recession

will be taken depending on the value of the cut-off ct and the predicted probabilities from the

model. Define Rt as the binary variable that defines whether the recession has occurred, then

the gain of correctly calling a recession is L(h) = f(h(ct, Pt, Rt)). In particularly, the gain from

the correct prediction as the percentage of success/hits (so each hit gives exactly the same gain)

is

L(h) = H(c) =

Pn
t=1Rt1(Pt ≥ c)

nR̄
,

where 1(.) is an indicator function and R̄ is the unconditional probability of the event recession.

The loss from false alarms is equal to the proportion of wrong predictions of recessions over

number of recessive events, then the impact on a false alarm in the individual’s loss is the same

as the hits:

L(fa) = FA(c) =

Pn
t=1(1−Rt)1(Pt ≥ c)

nR̄
.

Therefore, the loss function is:

L(c) =
(
Pn

t=1(1−Rt)1(Pt ≥ c))− (
Pn

t=1Rt1(Pt ≥ c))
nR̄

. (1)

This loss function has resemblance with the Kuipers Score (Pesaran and Skouras, 2002) but

has a weight (1/nR̄) for false alarms instead of 1/(1−nR̄). Because the unconditional mean of

the recession is around 0.16 (for event A), the proposed loss function gives more weight to the

losses from false alarms than the Kuipers Score. This loss function has the advantage of taking

into account the fact that the loss of wrongly predicting a recession is equivalent to the cost

of not predicting a recession, although the gains of correctly predicting a recession are higher

than the ones of correctly predicting the expansion phase. Asymmetry in the loss function to
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evaluate recessions has been also argued by Fintzen and Stekler (1999).

The optimal choice of ct is the one that minimises the loss function conditional on the past

values of Rt and Pt. In practice this can be done by calibrating the value of c using in-sample

forecasts (for t = 1, ..., t− 1), so that

ĉt = min
cL≤c≤cU

(L(fa(c))− L(h(c))). (2)

The grid for the search is defined assuming that cL is equal to unconditional probability of the

event (R̄) and cU = 0.9. The events to be predicted have R̄a = 0.16 and R̄b = 0.10, so the

upper value of the grid allows a quite large interval to take into account characteristics of the

model employed to obtain Pt. The lower probability of the grid follows Birchenhall et al. (1999)

that argue in favour of a cut-off equal to the unconditional mean of the event because it allows

to check if the model adds information to a naive model that always predicts the unconditional

mean. Based on ĉt estimated with in-sample predictions until t−1, the optimal decision for the
individual is to call a recession when Pt ≥ ĉt. This decision rule has an associate loss function

L = L(fa(ĉ)) − L(h(ĉ)). Therefore, recession forecasters are ranked using this loss function

calculated for recursive forecasts for t = 1, ..., n.

Even though the defined loss function is able to measure whether the model forecasts cor-

rectly the timing of the recession, the accuracy of the predictions could be also evaluated em-

ploying the quadratic probability score (QPS). This measure of accuracy is based on a quadratic

loss function which is also used to derive the mean of squared forecast errors of point forecasts.

The QPS is computed as follows:

QPS =
nX
t=1

(Pt −Rt)
2. (3)

The differential of this measure is that it does not depend on the definition of a cut-off and

gives the same weight for large and short forecast errors and also for recession and expansions.

3.3 Evaluating the Predictions of Probability of Recessions

The ability of the models to predict the probability of recession is evaluated under two scenarios.

The first one uses all the information available at 2003:Q4 which includes output growth data

until 2003:Q3. In this case, in-sample forecasts of the probabilities of each event are evaluated.

Using the parameters estimated for the full sample, information on output growth and spread

until t−1 is used to predict the probability of the event at t. The second scenario uses real-time
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information. The forecast for t employs the t data vintage, implying that information until t−1
is employed to estimate the model.

In both scenarios, it is necessary to define the cut-off ĉt such that a recession is predicted.

In the first scenario, a constant cut-off of .5 is employed for all the models, allowing better

comparison of in-sample performance of the models. This value is also employed by Birchenhall

et al. (1999), Chauvet and Piger (2003) and Dueker (2004). In real-time, an automated proce-

dure is employed to estimate the optimal cut-off in each point in time as described in section

3.2. The procedure employs events that occurred four quarters before t−1 (i.e., t−5), because
otherwise they would not be defined in real-time, and the past information available in a rolling

window of 15-years of in-sample forecasts (60 quarters).

The results of the evaluation are presented in Table 6. There are gains of accuracy and

timing from having jointly thresholds and a break-point in predicting the in-sample recessions

as defined by event A. The gains of accuracy of the SBTVAR compared with the VAR are of

30%. In addition, while the VAR predicts correctly 10% of the recession periods, the SBTVAR

does that in 45% of them without creating false alarms. The gains of accuracy do not occur

when predicting event B, but the SBTVAR is still the best for timing the recessions. The

SBTVAR is able to predict 2 out of the 6 recessive periods that happened after 1986 while the

VAR is not able to predict recessions. Plots of the predicted probabilities of each model for

each data vintage are presented in Figures 2 and 3.

The results using recursive estimation and real-time data show that the instability in the

estimation the SBTVAR is translated to a weak forecast performance. Given the short sample

sizes of the real-time exercise, it is reasonable to argue that is necessary all sample information

to have good estimates of thresholds and breaks presented in the last section. In real-time, the

TVAR is the best model to predict event A and the VAR is the best model in predicting event

B. This suggests that non-linearity is important in forecasting longer horizons because event

A requires predictions of output growth up to 5 steps-ahead. This result also suggest that the

TVAR is a robust specification that can be successfully employed in real-time.

Summarising, gains from predicting recessions using SBTVARs are strong only when all

sample is employed to estimate a break and thresholds. The TVAR and the VAR are robust

specifications to extract the information from the spread using real-time data. Non-linearity is

important when predicting recession events defined in longer horizons.
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4 Predicting the 2001 Recession

The analysis of models and leading indicators to predict output growth during the 2001 recession

is presented by Stock and Watson (2003), while predictions of the probability of recession have

been evaluated by Dueker (2002), Chauvet and Potter (2002), Chauvet and Piger (2003) and

Dueker (2004). The results indicate that, with the information available until the third quarter

of 2000, it is possible to predict a recession for 2001:Q2, while the NBER only declared a peak in

March 2001 using the information available in November 2001. In this section, the predictions

of the probability of recession for 2000-2002 from the models evaluated in the last section are

presented in comparison with other results in the literature. An important warning is that

the definitions of recessions of this work and the cited papers are not the same, but even so a

comparison gives an indication on whether the model proposed in this paper is really reasonable

to predict recessions compared with other alternatives.

Table 7 presents the predicted probability of recession of events A and B for each quarter of

2000 to 2002 using real-time data and the optimal cut-off for each point in time. The probability

of two quarters of negative growth in the next 5 quarters estimated with the SBTVAR is of

66% with the 2000:Q4 vintage (data available until 2000:Q3). This is a strong sign of recession

as argued by Dueker (2004) and it is larger than the other specifications. The Qualitative

VAR of Dueker (2004) — that uses the information on output growth, the spread and inflation

available until 2000:Q4 to predict whether the probability of a latent variable is equal to zero —

predicts a recession with a probability larger than 50% in 2001:Q3 and 2001:Q4. The predictions

of Chauvet and Potter (2002) of the probability of recession using a probit with a break in

1985 and with the spread as leading indicator are of 90% for the 12-month period starting in

January 2001. The probability of recessions for the same period is only of 45% when a break

is not estimated. Similarly, the predictions of recession computed in 2000:Q4 are of 66% with

the SBTVAR and of 25% from the TVAR. This shows the relevance of the break in correctly

timing recessions using the spread.

The analyis of predictions of event B are important because this event dates the 2001

recession as the NBER2 that is the ultimate date reference employed by other authors. In

addition, it allows to evaluate the ability of predicting recession in short horizons. The SBTVAR

predicts a recession in 2001:Q2 (probability of recession is larger than the cut-off), implying that

2Dueker (2004) argues that because the NBER peak was dated in March 2001, which is after the middle of the
quarter, the first quarter in recession is the second one and because the trough was dated in November 2001, the
last quarter of recession is 2001:Q4. I follow the quarterly dates presented in the NBER website (www.nber.org)
to affirm that event B gets exactly the quarters of the NBER recessions.
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with information until 2001:Q1, it is possible to identify a recession in 2001:Q2 and 2001:Q3. An

earlier warning of recession (2001:Q1) is given using the VAR. This confirms the results of Stock

and Watson (2003) that the spread is a good leading indicator of the 2001 recession although

this was not true when predicting the 1990/91 recession. The probit model with coefficients

changing by Markov-Switching proposed by Dueker (2002) also gives an recession sign for

the 2001:Q2 using the three-month difference of the composite leading indicator. In contrast,

the results of the Markov-Switching model applied to real-time output growth presented by

Chauvet and Piger (2003) indicate a probability of recession higher than 50% only in 2001:Q3.

This shows the relevance of the information of a leading indicator for real-time prediction.

Based on these results, one can conclude that the SBTVAR performs well in predicting the

2001 recession. Two factors are responsible for that: (a) time-varying non-linearity - a break

and different thresholds in each sub-sample - is needed to predict recessions in longer horizons

using the spread as leading indicator; and (b) the spread is a good leading indicator for the

2001 recession.

5 Conclusions

This paper proposes a VAR with time-varying threshold non-linearity, called structural break

threshold VAR (SBTVAR). When applied to US output growth and the spread (long- minus

short-term interest rate), the SBTVAR is able to characterise changes in the predictive ability

of the spread and in the volatility of the output growth. Real-time forecasts for the timing of

the 2001 recession are improved by allowing time-varying thresholds.

A maximum likelihood (HML) estimator for the SBTVAR is shown to jointly estimate

thresholds and a break-point without bias in finite samples. A model selection procedure

based on asymptotic bounds of supLM and supWald statistics (Altissimo and Corradi, 2002) is

proposed to decide whether there is a break and/or a threshold in a VAR. An evaluation of this

selection procedure in finite samples shows that it is generally able to choose the correct model

between a VAR, a threshold VAR, a structural break VAR and a SBTVAR. When this selection

procedure is applied to a VAR of US output growth and the spread, it suggests time-varying

threshold non-linearity. The SBTVAR captures a significantly increase in the threshold value

and a decrease in the variance of the output-growth equation after a break in 1981. However,

the estimates are sensible to the arrival of new information from new vintage data.

The SBTVAR is compared with a VAR and VARs with either breaks or thresholds in their

ability to predict recessions. Two recession events are defined based on forecast sequences out-
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put growth: event A generally anticipates NBER turning points and event B mimics the turning

points after 1983. The timing of predictions are evaluated using a loss function that gives equal

weights to hits and false alarms, and the accuracy is assessed using the quadratic probabil-

ity score. The results indicate that: (a) gains from predicting recessions using SBTVARs are

stronger only when all information is employed to estimate a break and thresholds; (b) TVARs

and VARs are robust specifications to extract the information from the spread using real-time

data; and (c) non-linearity is important when predicting recession events defined in longer hori-

zons. A comparison of the predictions for 2001 recession from the SBTVAR with other models

presented in literature shows that the SBTVAR performs well. Two factors are responsible

for that: time-varying non-linearity is needed to predict recessions in longer horizons using the

spread and the spread is a good leading indicator for the 2001 recession.

The proposed SBTVAR could be employed in future research to extract information from

other leading indicators or from the CLI. Based on the evidence of structural breaks in many

macroeconomic time series (Sensier and Van Dijk, 2001) and of non-linearity in some series

(Stock and Watson, 1999), the SBTVAR could also be employed to model dynamic relations

between macroeconomic variables, such as unemployment, inflation and output growth.

References

Altissimo, F. and Corradi, V. (2002). Bounds for inference with nuisance parameters present

only under the alternative, Econometrics Journal 5: 494—519.

Anderson, H. M. and Vahid, F. (2001). Predicting the probability of a recession with nonlinear

autoregressive leading indicator models, Macroeconomic Dynamics 59: 482—505.

Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown

change point, Econometrica 61: 821—56.

Berk, J. M. (1998). The information content of the yield curve for monetary policy: A survey,

De Economist 146: 303—20.

Birchenhall, C. R., Jensen, H., Osborn, D. and Simpson, P. (1999). Predicting u.s. business-

cycle regimes, Journal of Business and Economic Statistics 17: 79—97.

Carrasco, M. (2002). Misspecified structural change, threshold and markov switching models,

Journal of Econometrics 109: 239—73.

Chauvet, M. and Piger, J. M. (2003). Identifying business cycle turning points in real time,

Federal Reserve Bank of St. Louis Review pp. 47—61.



20

Chauvet, M. and Potter, S. (2002). Predicting a recession: Evidence from the yield curve in

the presence of structural breaks, Economics Letters 77: 245—53.

Clements, M. P. and Galvão, A. B. C. (2004). A comparison of tests of non-linear cointegra-

tion with an application to the predictability of the US term structure of interest rates,

International Journal of Forecasting forthcoming.

Croushore, D. and Stark, T. (2001). A real-time dataset for macroeconomists, Journal of

Econometrics 105: 111—30.

Don’t Mention the R-Word: Are Economic Forecasters Wishful Thinkers or Wimps? (2001).

The Economist, printed edition March 1.

Dotsey, M. (1998). The predictive content of the interest rate term spread for future economic

growth, Federal Reserve of Richmond, Economic Quartely 84: 31—51.

Dueker, M. J. (1997). Strengthening the case for the yield curve as a predictor of US recessions,

Federal Reserve Bank of St. Louis Review mar./apr.: 41—51.

Dueker, M. J. (2002). Regime-dependent recession forecasts and the 2001 recession, Federal

Reserve Bank of St. Louis Review 84: 29—36.

Dueker, M. J. (2004). Dynamic forecasts of qualitative variables: A Qual VAR model of u.s.

recessions, Journal of Business and Economic Statistics, forthcoming .

Estrella, A. and Hardouvelis, G. A. (1991). The term structure as a predictor of real economic

activity, Journal of Finance 46: 555—76.

Estrella, A. and Mishkin, F. S. (1998). Predicting US recessions: Financial variables as leading

indicators, Review of Economics and Statistics 80: 45—61.

Estrella, A., Rodrigues, A. P. and Schich, S. (2003). How stable is the predictive power of the

yield curve? Evidence from Germany and the United States, Review of Economics and

Statistics 85: 629—44.

Fair, R. C. (1993). Estimating event probabilities from macroeconometric models using sto-

chastic simulation, in J. H. Stock and M. W. Watson (eds), Business Cycles, Indicators,

and Forecasting, NBER, University of Chicago Press, Chicago, pp. 157—78.

Fintzen, D. and Stekler, H. O. (1999). Why did forecasters fail to predict the 1990 recession?,

International Journal of Forecasting 15: 309—23.

Galbraith, J. W. and Tkacz, G. (2000). Testing for asymmetry in the link between the yield

spread and output in the G-7 countries, Journal of International Money and Finance

19: 657—672.

Gonzalo, J. and Pitarakis, J.-I. (2002). Estimation and model selection based inference in single

and multiple threshold models, Journal of Econometrics 110: 319—52.



21

Hamilton, J. D. and Kim, D. H. (2002). A re-examination of the predictability of economic

activity using the yield spread, Journal of Money, Credit and Banking 34: 340—60.

Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null

hypothesis, Econometrica 64: 413—30.

Hansen, B. E. and Seo, B. (2002). Testing for two-regime threshold cointegration in vector error

correction models, Journal of Econometrics 110: 293—318.

Haubrich, J. G. and Dombrosky, A. M. (1996). Predicting real growth using the yield curve,

Federal Reserve Bank of Cleveland, Economic Review 32: 26—34.

Kim, C.-J. and Nelson, C. R. (1999). Has the US economy become more stable? A Bayesian

approach based on a Markov-switching model of the business cycle, Review of Economics

and Statistics 81: 608—16.

Koop, G. and Potter, S. M. (2000). Nonlinearity, structural breaks, or outliers in economic time

series?, in W. A. Barnett, D. F. Hendry, S. Hylleberg, T. Teräsvirta, D. Tjostheim and

A. Würtz (eds), Nonlinear Econometric Modeling in Time Series, Cambridge University

Press, Cambridge, pp. 61—78.

Koop, G. and Potter, S. M. (2001). Are apparent findings of nonlinearity due to structural

instability in economic time series?, Econometrics Journal 4: 37—55.

Lahiri, K. and Wang, J. G. (1996). Interest rate spreads as predictors of business cycles, in

G. S. Maddala and C. R. Rao (eds), Handbook of Statistics, Vol. 14, Elsevier, Amsterdam,

pp. 297—315.

Lundbergh, S., Teräsvirta, T. and Van Dijk, D. (2003). Time-varying smooth transition au-

toregressive models, Journal of Business and Economics Statistics 21: 104—21.

McConnell, M. M. and Perez-Quiros, G. (2000). Output fluctuations in the United States:

What has changed since early 1980s?, American Economic Review 90: 1464—76.

Pesaran, M. H. and Skouras, S. (2002). Decision-based methods for forecast evaluation, in

M. P. Clements and D. F. Hendry (eds), A Companion to Economic Forecasting, Blackwell,

Oxford, pp. 241—67.

Pesaran, M. H. and Timmermann, A. (2004). How costly is it to ignore breaks when forecasting

the direction of a time series?, International Journal of Forecasting (forthcoming) .

Sensier, M. and Van Dijk, D. (2001). Short-term volatility versus long-term growth: Evidence in

US macroeconomic time series, Centre for Growth and Business Cycle Research, University

of Manchester, Discussion Paper 8.

Stock, J. H. and Watson, M. W. (1989). New indexes of coincident and leading economic

indicators, NBER Macroeconomics Annual 4: 351—94.



22

Stock, J. H. and Watson, M. W. (1999). A comparison of linear and nonlinear univariate

models for forecasting macroeconomic time series, in R. F. Engle and H. White (eds),

Cointegration, Causality and Forecasting: A Festschrift in Honour of Clive Granger, Ox-

ford University Press, Oxford, pp. 1—44.

Stock, J. H. and Watson, M. W. (2001). Forecasting output and inflation: The role of asset

prices, NBER Working Paper 8180.

Stock, J. H. and Watson, M. W. (2003). How did leading indicator forecasts do during the 2001

recession?, pp. 71—90.

Strikholm, B. and Teräsvirta, T. (2003). Determining the number of regimes in a threshold

autoregressive model using smooth transitions, Department of Economic Statistics, Stock-

holm School of Economics (mimeo) .

Tsay, R. S. (1998). Testing and modeling multivariate threshold models, Journal of American

Statistical Association 93: 1188—1202.

Van Dijk, D., Strikholm, B. and Teräsvirta, T. (2003). The effects of institutional and techno-

logical change and business cycle fluctuations on seasonal patterns in quarterly industrial

production series, Econometrics Journal 6: 79—98.

Watson, M. W. (1999). Explaining the increased variability in long-term interest rates, Federal

Reserve Bank of Richmond, Economic Quaterly 85: 71—96.

A Algorithm to obtain predictive probabilities from the models

The procedure to extract the probabilities of event A and B from the models is the same as the

one described by Anderson and Vahid (2001). Define Xt−1 = {xt−1,xt−2, ..x1} as the history
of xt and xt = f(Xt−1;Γ) + ut as the forecasting model where Γ is the matrix of parameters,

including thresholds and break when they are defined in the specification, and ut are iid with

V ar(²t) = Σ. Given β̂ and Σ̂, the trial sequence of forecasts for {xt,xt+1,xt+2,xt+3,xt+4}
conditional on Xt−1 is built as follows. A random vector ut is drawn by bootstrap from the

residuals ût and it is used to calculate x̂t, given Xt−1 and β̂. x̂t is added to “history” to form

X̂t. Then a new draw (²t+1) is made from the residuals and it is employed to calculate x̂t+1,

given X̂t and β̂ and to form X̂t+1. This procedure is continued until the sequence of forecasts

is complete {x̂t, x̂t+1, x̂t+2, x̂t+3, x̂t+4}. This sequence of forecasts can be called S1, and the

same trial is repeated to obtain a set of 2000 forecast sequences. The probability of event A (B)

is the proportion of these 2000 sequences in which the event A (B) occurs (Pt). In the case of

event B, information of xt−1 is added to the sequence of forecasts to define whether the event
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is identified in each sequence.

In the case of threshold VARs, the model can be also written as xjt = f j(Xt−1;Γj) + ujt,

where j = 1, 2 for models with two regimes and j = 1, 2, 3, 4 for structural threshold models.

Therefore, V ar(ujt) depends on the regime (defined by the threshold and the transition variable),

so for each regime with different number of observations Tj (T =
Ps

j=1 Tj), there is a different

Σj and ujt is supposed to be multivariate normal with variance Σ̂
j. In this framework, for each

step to obtain the forecast sequences (h = 0, ..., 4) for, say, a two-regime threshold model, either

vector ü1t+h is drawn from û1t or vector ü
2
t+h is drawn from û2t depending on ŜT+h−1−d < r or

ŜT+h−1−d > r. Then these vector are employed to compute x̂t+h that includes the transition

variable that defines the regimes ŜT+h−1−d. In the case of structural break VARs, the residuals

are also drawn conditional on the sub-sample, allowing the variance to change depending on

the period.
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Table 1 Definition of DGPs.
DGP: VAR

x1t= ( 0.4x1t−1+ 0.8x2t−1+ u1t)
x2t= (0.5+ 0.8x2t−1+ u2t)

DGP: TVAR
x1t= {( 0.4x1t−1+ 0.8x2t−1+ u11t) I(x2t−1≤ 2.5)+

( 0.4x1t−1+ u21t) (1− I(x2t−1≤ 2.5))}
x2t= (0.5+ 0.8x2t−1+ u2t)

DGP: SBVAR
x1t= {( 0.4x1t−1+ 0.8x2t−1+ u11t) I(t ≤ τ)+

( 0.4x1t−1+ u21t) (1− I(t ≤ τ))}
x2t= {(0.4+ 0.8x2t−1+ u12t) I(t ≤ τ)+

(0.6+ 0.8x2t−1+ u22t) (1− I(t ≤ τ))}

DGP: SBTVARc
x1t= {[( 0.4x1t−1+ 0.8x2t−1+ u11t) (I(x2t−1≤ 2.5)I(t ≤ τ))+

( 0.4x1t−1+ u21t) (1− I(x2t−1≤ 2.5)I(t ≤ τ))]+
[( 0.4x1t−1+ 0.3x2t−1+ u31t) (I(x2t−1≤ 2.5)I(t > τ))+
( 0.4x1t−1+ u41t) (I(x2t−1≤ 2.5)I(t > τ))]}.

x2t= {(0.4+ 0.8x2t−1+ u12t) I(t ≤ τ)+
(0.6+ 0.8x2t−1+ u22t) (1− I(t ≤ τ))}

DGP: SBTVAR
x1t= {[( 0.4x1t−1+ 0.8x2t−1+ u11t) (I(x2t−1≤ 2)I(t ≤ τ))+

( 0.4x1t−1+ u21t) (1− I(x2t−1≤ 2)I(t ≤ τ))]+
[( 0.4x1t−1+ 0.3x2t−1+ u31t) (I(x2t−1≤ 3)I(t > τ))+
( 0.4x1t−1+ u41t) (I(x2t−1≤ 3)I(t > τ))]}.

x2t= {(0.4+ 0.8x2t−1+ u12t) I(t ≤ τ)+
(0.6+ 0.8x2t−1+ u22t) (1− I(t ≤ τ))}

Break: τ = 100 when n = 200 and τ = 200 when n = 400.

Hom.: var(uit) =

·
1 cor
cor 1

¸
for all i; cor = 0, -0,3,-0,6,

Het.: var(uit) =

·
3 cov
cov 1

¸
for i=1 for TVAR e SBVAR

and for i=1,2 for SBTVARc and SBTVAR; same cor. as hom.
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Table 2 .

Performance of estimation procedures for TVAR, SBVAR, SBTVARc and SBTVAR 
T = 200 T = 400

hom het hom het
σ12=0 σ12=-0.3 σ12=-0.6 σ12=0 σ12=-0.3 σ12=-0.6 σ12=0 σ12=-0.3 σ12=-0.6 σ12=0 σ12=-0.3 σ12=-0.6

DGP: TVAR
r = 2.5 r = 2.5

CLS mean 2.495 2.486 2.494 2.449 2.453 2.434 2.499 2.499 2.498 2.485 2.484 2.488
std.err. 0.056 0.049 0.045 0.143 0.157 0.245 0.023 0.024 0.026 0.041 0.047 0.056
bias -0.005 -0.014 -0.006 -0.051 -0.047 -0.066 -0.001 -0.001 -0.002 -0.015 -0.016 -0.012
bias/std.err. -0.089 -0.286 -0.133 -0.357 -0.299 -0.269 -0.043 -0.042 -0.077 -0.366 -0.340 -0.214

ML mean 2.494 2.489 2.495 2.437 2.459 2.47 2.5 2.498 2.5 2.484 2.486 2.494
std.err. 0.049 0.045 0.032 0.172 0.115 0.115 0.02 0.025 0.021 0.041 0.043 0.033
bias -0.006 -0.011 -0.005 -0.063 -0.041 -0.03 0 -0.002 0 -0.016 -0.014 -0.006
bias/std.err. -0.122 -0.244 -0.156 -0.366 -0.357 -0.261 0.000 -0.080 0.000 -0.390 -0.326 -0.182

HML mean 2.492 2.486 2.494 2.483 2.481 2.491 2.498 2.498 2.501 2.497 2.496 2.502
std.err. 0.049 0.057 0.032 0.061 0.064 0.046 0.023 0.025 0.021 0.032 0.031 0.029
bias -0.008 -0.014 -0.006 -0.017 -0.019 -0.009 -0.002 -0.002 0.001 -0.003 -0.004 0.002
bias/std.err. -0.163 -0.246 -0.188 -0.279 -0.297 -0.196 -0.087 -0.080 0.048 -0.094 -0.129 0.069

DGP: SBVAR
t = 100 t = 200

CLS mean 99.532 99.672 99.798 97.985 98.447 99.133 199.11 199.448 200.036 197.59 198.594 199.504
std.err. 3.993 3.592 4.096 5.328 4.892 4.999 2.207 2.2 3.014 5.138 3.499 3.458
bias -0.468 -0.328 -0.202 -2.015 -1.553 -0.867 -0.888 -0.552 0.036 -2.414 -1.406 -0.496
bias/std.err. -0.228 -0.259 -0.448 -0.363 -0.449 -0.594 -0.407 -0.354 -0.310 -0.497 -0.458 -0.517

ML mean 99.532 99.161 98.951 98.272 97.908 97.852 199.13 199.21 199.308 197.8 198.132 198.65
std.err. 4.018 3.351 2.363 5.344 5.524 3.889 2.233 2.062 1.748 5.54 3.621 2.691
bias -0.468 -0.839 -1.049 -1.728 -2.092 -2.148 -0.874 -0.79 -0.692 -2.204 -1.868 -1.35
bias/std.err. -0.228 -0.259 -0.448 -0.363 -0.449 -0.594 -0.407 -0.354 -0.310 -0.497 -0.458 -0.517

HML mean 99.217 99.161 98.86 98.902 98.58 98.587 199.1 199.238 199.364 198.86 198.888 198.958
std.err. 3.438 3.244 2.546 3.028 3.16 2.377 2.217 2.152 2.05 2.293 2.428 2.014
bias -0.783 -0.839 -1.14 -1.098 -1.42 -1.413 -0.902 -0.762 -0.636 -1.14 -1.112 -1.042
bias/std.err. -0.228 -0.259 -0.448 -0.363 -0.449 -0.594 -0.407 -0.354 -0.310 -0.497 -0.458 -0.517

DGP: SBTVARc
r = 2.5; t=100 r = 2.5; t = 200

CLS mean 2.467 2.433 2.471 2.375 2.388 2.35 2.492 2.489 2.487 2.453 2.475 2.469
std.err. 0.171 0.233 0.196 0.468 0.438 0.481 0.039 0.106 0.063 0.221 0.149 0.186
bias -0.033 -0.067 -0.029 -0.125 -0.112 -0.15 -0.008 -0.011 -0.013 -0.047 -0.025 -0.031
bias/std.err. -0.193 -0.288 -0.148 -0.267 -0.256 -0.312 -0.205 -0.104 -0.206 -0.213 -0.168 -0.167
mean 102.52 102.433 99.361 88.409 86.935 86.95 202.74 200.038 196.327 186.17 182.828 181.847
std.err. 17.509 17.789 18.059 18.452 18.18 18.079 25.475 23.368 25.629 30.207 29.652 31.824
bias 2.517 2.433 -0.639 -11.591 -13.065 -13.05 2.738 0.038 -3.673 -13.83 -17.172 -18.153
bias/std.err. 0.144 0.137 -0.035 -0.628 -0.719 -0.722 0.107 0.002 -0.143 -0.458 -0.579 -0.570

ML mean 2.468 2.446 2.488 2.359 2.363 2.398 2.492 2.496 2.497 2.445 2.464 2.481
std.err. 0.177 0.192 0.077 0.491 0.445 0.383 0.039 0.038 0.032 0.276 0.179 0.123
bias -0.032 -0.054 -0.012 -0.141 -0.137 -0.102 -0.008 -0.004 -0.003 -0.055 -0.036 -0.019
bias/std.err. -0.181 -0.281 -0.156 -0.287 -0.308 -0.266 -0.205 -0.105 -0.094 -0.199 -0.201 -0.154
mean 102.29 101.018 100.259 89.293 88.017 89.183 202.83 199.684 200.825 185.04 184.482 185.254
std.err. 17.319 18.209 16.488 19.31 19.764 17.916 25.511 23.574 20.429 30.462 31.193 30.078
bias 2.289 1.018 0.259 -10.707 -11.983 -10.817 2.827 -0.316 0.825 -14.965 -15.518 -14.746
bias/std.err. 0.132 0.056 0.016 -0.554 -0.606 -0.604 0.111 -0.013 0.040 -0.491 -0.497 -0.490

HML mean 2.44 2.41 2.454 2.303 2.376 2.344 2.485 2.493 2.499 2.394 2.448 2.48
std.err. 0.346 0.362 0.191 0.633 0.564 0.499 0.084 0.057 0.034 0.374 0.213 0.126
bias -0.06 -0.09 -0.046 -0.197 -0.124 -0.156 -0.015 -0.007 -0.001 -0.106 -0.052 -0.02
bias/std.err. -0.173 -0.249 -0.241 -0.311 -0.220 -0.313 -0.179 -0.123 -0.029 -0.283 -0.244 -0.159
mean 101.98 102.264 100.666 98.661 97.475 97.768 202.08 198.115 199.615 198.15 198.349 198.245
std.err. 19.293 19.861 19.309 12.884 12.145 11.221 25.756 24.843 22.59 9.696 10.065 7.155
bias 1.981 2.264 0.666 -1.339 -2.525 -2.232 2.075 -1.885 -0.385 -1.855 -1.651 -1.755
bias/std.err. 0.103 0.114 0.034 -0.104 -0.208 -0.199 0.081 -0.076 -0.017 -0.191 -0.164 -0.245

r̂

r̂

r̂

τ̂

τ̂

τ̂

r̂

τ̂

r̂

τ̂

r̂

τ̂
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DGP: SBTVAR
r1 = 2; r2 = 3; t=100 r1 = 2; r2 = 3; t=200

CLS mean 1.9 1.931 1.92 1.933 1.853 1.969 1.965 1.948 1.965 1.903 1.879 1.914
std.err. 0.431 0.493 0.519 0.647 0.635 0.708 0.117 0.216 0.206 0.33 0.403 0.458
bias -0.1 -0.069 -0.08 -0.067 -0.147 -0.031 -0.035 -0.052 -0.035 -0.097 -0.121 -0.086
bias/std.err. -0.232 -0.140 -0.154 -0.104 -0.231 -0.044 -0.299 -0.241 -0.170 -0.294 -0.300 -0.188
mean 2.793 2.66 2.702 2.92 2.878 2.941 2.804 2.699 2.64 2.903 2.803 2.815
std.err. 0.93 0.86 0.863 0.977 0.981 0.939 0.673 0.706 0.729 0.734 0.64 0.655
bias -0.207 -0.34 -0.298 -0.08 -0.122 -0.059 -0.196 -0.301 -0.36 -0.097 -0.197 -0.185
bias/std.err. -0.223 -0.395 -0.345 -0.082 -0.124 -0.063 -0.291 -0.426 -0.494 -0.132 -0.308 -0.282
mean 105.6 103.147 103.787 136.07 135.993 135.829 205.33 200.835 205.039 275.95 275.668 275.239
std.err. 29.875 30.252 30.391 2.479 3.214 2.872 57.397 59.052 57.256 2.619 3.657 3.968
bias 5.604 3.147 3.787 36.072 35.993 35.829 5.328 0.835 5.039 75.947 75.668 75.239
bias/std.err. 0.188 0.104 0.125 14.551 11.199 12.475 0.093 0.014 0.088 28.998 20.691 18.961

ML mean 1.924 1.886 1.951 1.9 1.824 1.885 1.949 1.966 1.99 1.864 1.837 1.915
std.err. 0.473 0.522 0.325 0.669 0.71 0.665 0.185 0.109 0.202 0.402 0.426 0.37
bias -0.076 -0.114 -0.049 -0.1 -0.176 -0.115 -0.051 -0.034 -0.01 -0.136 -0.163 -0.085
bias/std.err. -0.161 -0.218 -0.151 -0.149 -0.248 -0.173 -0.276 -0.312 -0.050 -0.338 -0.383 -0.230
mean 2.764 2.676 2.693 2.902 2.899 2.833 2.755 2.749 2.751 2.906 2.852 2.905
std.err. 0.915 0.862 0.819 0.987 0.955 0.835 0.681 0.624 0.577 0.709 0.571 0.547
bias -0.236 -0.324 -0.307 -0.098 -0.101 -0.167 -0.245 -0.251 -0.249 -0.094 -0.148 -0.095
bias/std.err. -0.258 -0.376 -0.375 -0.099 -0.106 -0.200 -0.360 -0.402 -0.432 -0.133 -0.259 -0.174
mean 105.33 105.395 103.47 133.51 133.601 132.251 201.84 204.835 204.9 270.93 270.472 269.237
std.err. 31.127 30.88 29.972 7.508 7.711 8.312 60.108 59.3 49.53 9.674 10.689 12.981
bias 5.326 5.395 3.47 33.512 33.601 32.251 1.841 4.835 4.9 70.93 70.472 69.237
bias/std.err. 0.171 0.175 0.116 4.464 4.358 3.880 0.031 0.082 0.099 7.332 6.593 5.334

HML mean 1.844 1.895 1.93 1.738 1.775 1.833 1.963 1.961 1.984 1.845 1.726 1.842
std.err. 0.597 0.546 0.522 1.053 0.89 0.82 0.117 0.131 0.04 0.464 0.534 0.453
bias -0.156 -0.105 -0.07 -0.262 -0.225 -0.167 -0.037 -0.039 -0.016 -0.155 -0.274 -0.158
bias/std.err. -0.261 -0.192 -0.134 -0.249 -0.253 -0.204 -0.316 -0.298 -0.400 -0.334 -0.513 -0.349
mean 2.862 2.689 2.695 2.781 2.675 2.699 2.859 2.828 2.864 2.858 2.822 2.869
std.err. 1.08 0.984 0.881 1.013 0.996 0.842 0.671 0.574 0.478 0.648 0.517 0.489
bias -0.138 -0.311 -0.305 -0.219 -0.325 -0.301 -0.141 -0.172 -0.136 -0.142 -0.178 -0.131
bias/std.err. -0.128 -0.316 -0.346 -0.216 -0.326 -0.357 -0.210 -0.300 -0.285 -0.219 -0.344 -0.268
mean 102.6 104.308 103.733 98.413 97.535 99.232 201.68 199.744 203.271 198.45 196.73 199.121
std.err. 21.132 19.841 18.729 14.08 13.459 11.497 30.027 25.854 21.22 12.604 11.241 6.836
bias 2.596 4.308 3.733 -1.587 -2.465 -0.768 1.677 -0.256 3.271 -1.546 -3.27 -0.879
bias/std.err. 0.123 0.217 0.199 -0.113 -0.183 -0.067 0.056 -0.010 0.154 -0.123 -0.291 -0.129

Note: these results are based on 500 replications.

1̂r

2̂r

τ̂

1̂r

2̂r

τ̂

1̂r

2̂r

τ̂
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Table 3 Selection Frequencies using BWald and BLM.
VAR TVAR SBVAR SBTVARc SBTVAR VAR TVAR SBVAR SBTVARc SBTVAR

n DGP: VAR

200 W 0.938 0.023 0.024 0.002 0.013

LM 0.957 0.015 0.018 — 0.010

400 W 0.982 0.003 0.010 — 0.003

LM 0.991 0.004 0.005 — —

DGP: TVAR, no variance change DGP: TVAR, regime changing variance

200 W — 0.672 — 0.105 0.223 — 0.623 — 0.110 0.254

LM — 0.744 — 0.076 0.180 — 0.698 — 0.085 0.216

400 W — 0.769 — 0.072 0.159 — 0.708 — 0.064 0.228

LM — 0.795 — 0.065 0.140 — 0.770 — 0.048 0.182

DGP: SBVAR, no variance change DGP: SBVAR, regime changing variance

200 W — — 0.755 0.077 0.168 — — 0.700 0.106 0.194

LM — — 0.800 0.058 0.142 — — 0.746 0.085 0.169

400 W — — 0.851 0.034 0.115 — — 0.824 0.036 0.140

LM — — 0.880 0.026 0.094 — — 0.830 0.033 0.137

DGP: SBTVARc, no variance change DGP: SBTVARc, regime changing variance

200 W 0.013 0.130 — 0.309 0.548 0.046 0.223 0.008 0.241 0.482

LM 0.016 0.166 0.002 0.290 0.526 0.056 0.259 0.010 0.224 0.451

400 W — 0.025 — 0.339 0.636 — 0.102 — 0.266 0.632

LM — 0.029 — 0.338 0.633 — 0.101 — 0.261 0.638

DGP: SBTVAR, no variance change DGP: SBTVAR, regime changing variance

200 W 0.135 0.118 0.002 0.130 0.615 0.242 0.173 0.011 0.117 0.457

LM 0.161 0.140 — 0.111 0.588 0.268 0.206 0.012 0.102 0.412

400 W 0.012 0.021 — 0.064 0.903 0.062 0.080 — 0.096 0.762

LM 0.013 0.024 — 0.064 0.899 0.052 0.085 — 0.082 0.781

Note: Selection rates based on 1000 replications with DGPs described in Table 1.
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Table 4 Estimated Parameters (1953:Q2 - 2002:Q4).
VAR TVAR SBVAR SBTVARc SBTVAR

d - 4 - 4 4, 4

r̂ -
0.463
[0.20,0.62]

-
0.488
[0.47,1.23]

0.31
[0.16,0.54]

,
1.51
[1.29,1.79]

τ̂ - -
1985:2
[1983:2,1986:2]

1971:2
[1969:3,1972:4]

1981:1
[1980:1,1982:1]

σ̂2Y 0.718
0.972
0.536

0.929
0.230

1.007
0.653
0.573
0.466

0.924
0.811
0.353
0.157

σ̂2S 0.274
0.496
0.139

0.326
0.118

0.130
0.023
0.663
0.178

0.408
0.079
0.211
0.172

T 195
47
148

124
71

22
46
26
101

27
80
39
49

SIC -1.265 -1.412 -1.324 -1.165 -1.211

Note: The numbers in [ ] are the 90% confidence interval computed by bootstrap. σ̂2Y and σ̂2S are respectively

the estimated variance of output and spread equations for each regime with T observations.

Table 5 LM bounds (sample: 1953:Q2 - 2002:Q4).
H0 X HA BWald BLM

1A VAR X TVAR 1.602 1.497
1B VAR X SBVAR 1.134 1.095
2A1 TVAR X SBTVARc 1.476 1.393
2A2 TVAR X SBTVAR 1.695 1.572
2B1 SBVAR X SBTVARc 1.876 1.713
2B2 SBVAR X SBTVAR 2.064 1.852
X1 TVAR X 3R-TVAR 0.807 0.792
X2 SBVAR X 2-SBVAR 1.261 1.190

Note: Selection rule: if Bwald (BLM) > 1,

then choose model under alternative.



29

Table 6 Measures of Forecasting Performance of the Probability of Recession.
VAR TVAR SBVAR SBTVARc SBTVAR

Sample Event A
QPS In 1954:2 -2003:3 0.093 0.074 0.097 0.072 0.066

1986:1 -2003:3 0.086 0.080 0.112 0.070 0.063
RT 1986:1 -2003:4 0.092 0.087 0.120 0.100 0.104

L(c) In 1954:2 -2003:3 -0.097 -0.387 -0.226 -0.258 -0.452
1986:1 -2003:3 0 -0.10 0 -0.20 -0.40

RT 1986:1 -2003:4 0 -0.30 0.10 0 0
Event B

QPS In 1954:2 -2003:3 0.059 0.046 0.058 0.057 0.048
1986:1 -2003:3 0.045 0.044 0.048 0.036 0.037

RT 1986:1 -2003:4 0.066 0.075 0.081 0.077 0.072
L(c) In 1954:2 -2003:3 -0.059 -0.118 0.059 -0.059 -0.177

1986:1 -2003:3 0 -0.167 0 -0.333 -0.333
RT 1986:1 -2003:4 -0.167 0 0.167 0 0

Note: QPS is computed as in eq. 3 and L(c) is defined in eq. 1. In: in-sample; RT: real-

time. Event A and B are defined in section 3.1.



30

Table 7 Predictions of Recession with Real-Time Data for 2000 - 2002.
VAR TVAR SBVAR SBTVARc SBTVAR
P̂t ĉt P̂t ĉt P̂t ĉt P̂t ĉt P̂t ĉt

Event A
2000:Q1 0.10 0.18 0.03 0.16 0.12 0.23 0.13 0.29 0.02 0.29
2000:Q2 0.15 0.23 0.04 0.16 0.02 0.16 0.02 0.18 0.06 0.31
2000:Q3 0.19 0.25 0.06 0.16 0.02 0.18 0.04 0.16 0.11 0.47
2000:Q4 0.31 0.25 0.25 0.16 0.02 0.16 0.30 0.20 0.66 0.51
2001:Q1 0.35 0.25 0.44 0.16 0.05 0.16 0.46 0.20 0.37 0.18
2001:Q2 0.26 0.23 0.37 0.16 0.03 0.16 0.42 0.16 0.46 0.18
2001:Q3 0.12 0.23 0.16 0.18 0.02 0.16 0.19 0.16 0.00 0.27
2001:Q4 0.08 0.23 0.09 0.20 0.03 0.18 0.10 0.16 0.05 0.18
2002:Q1 0.05 0.25 0.02 0.20 0.06 0.29 0.02 0.40 0.01 0.27
2002:Q2 0.04 0.25 0.02 0.20 0.00 0.16 0.01 0.25 0.01 0.20
2002:Q3 0.04 0.25 0.02 0.16 0.01 0.16 0.02 0.29 0.01 0.20
2002:Q4 0.05 0.25 0.04 0.18 0.03 0.16 0.03 0.25 0.02 0.42
Hits 3 3 0 2 3
FA 0 0 0 1 0
QPS 0.24 0.26 0.40 0.25 0.21

Event B
2000:Q1 0.01 0.13 0.01 0.10 0.02 0.13 0.01 0.13 0.00 0.18
2000:Q2 0.02 0.10 0.01 0.10 0.00 0.10 0.00 0.10 0.00 0.33
2000:Q3 0.03 0.30 0.02 0.13 0.00 0.10 0.00 0.10 0.00 0.35
2000:Q4 0.09 0.13 0.02 0.10 0.00 0.10 0.01 0.10 0.03 0.33
2001:Q1 0.17 0.13 0.03 0.10 0.02 0.10 0.03 0.10 0.08 0.10
2001:Q2 0.13 0.13 0.04 0.10 0.02 0.10 0.04 0.10 0.25 0.15
2001:Q3 0.05 0.13 0.08 0.10 0.01 0.10 0.11 0.10 0.00 0.15
2001:Q4 0.13 0.13 0.15 0.15 0.08 0.10 0.24 0.10 0.33 0.10
2002:Q1 0.03 0.13 0.01 0.18 0.05 0.10 0.02 0.10 0.01 0.10
2002:Q2 0.01 0.13 0.00 0.15 0.00 0.10 0.00 0.10 0.00 0.10
2002:Q3 0.01 0.15 0.00 0.10 0.00 0.10 0.01 0.10 0.00 0.10
2002:Q4 0.01 0.15 0.01 0.13 0.00 0.10 0.01 0.10 0.00 0.28
Hits 2 0 0 1 1
FA 1 0 0 1 1
QPS 0.20 0.23 0.24 0.23 0.21

Note: Bolded dates indicate the quarter in which the events occurred. Bolded probabilities

indicate that a recession is signalized because P̂t > ĉt.
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Figure 1 E(x1t|x2t−1) estimated by local linear regression with data simulated from the DGPs
described in Table 1 (panels: 1- VAR; 2 - TVAR; 3 - SBVAR; 4 - SBTVARc; 5 -SBTVAR).
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Recursive Estimates with Real-Time data for the delay
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Recursive Estimation with Real-Time Data for thresholds
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Figure 2 Recursive estimates with real-time data for delays, break-points and thresholds for
SBVAR, TVAR, SBTVARc and SBTVAR.
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Figure 3 In-sample predictions of the probability of recession (event A, dotted line).
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Figure 4 In-sample predictions of the probability of recession (event B, dotted line).
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