

Structural Break Threshold VARs for Predicting US Recessions using the Spread

Ana Beatriz C. Galvão

Insper Working Paper WPE: 046/2003

Copyright Insper. Todos os direitos reservados.

É proibida a reprodução parcial ou integral do conteúdo deste documento por qualquer meio de distribuição, digital ou impresso, sem a expressa autorização do Insper ou de seu autor.

A reprodução para fins didáticos é permitida observando-sea citação completa do documento

Structural Break Threshold VARs for Predicting US Recessions using the Spread

Ana Beatriz C. Galvão^{*} Ibmec Business School São Paulo, Brazil anabg@ibmec.br

This version: March 2004

Abstract

This paper proposes a model to predict recessions that accounts for non-linearity and a structural break when the spread between long- and short-term interest rates is the leading indicator. Estimation and model selection procedures allow to estimate and to identify time-varying non-linearity in a VAR. The structural break threshold VAR (SBTVAR) predicts better the timing of recessions than models with constant threshold or with only a break. Using real-time data, the SBTVAR with spread as leading indicator is able to anticipate correctly the timing of the 2001 recession.

Key words: structural breaks; thresholds; event forecast; recession; real-time data; asymptotic bounds.

JEL codes: C32, C53, E32.

^{*}I would like to thank comments and suggestions made by Mike Clements, Bill Russell, and the participants of the RES meeting at Warwick (2002), the Common Features in Rio, and the SBE meeting in Salvador in previous versions of this paper. This new version of the paper has benefited from comments of the members of the Statistics Department of the Stockholm School of Economics during a research visit in January 2004. Financial support from CNPq is gratefully acknowledge.

1 Introduction

Economic forecasters do not usually enjoy a good reputation when trying to predict a possible US recession: "the dismal scientists have a dismal record in predicting recessions" (*Don't Mention the R-word*, 2001). The problem is that recessions are relatively rare events with potential strong negative consequences for individuals as well as businesses. The main contribution of this paper is to propose a model to predict recessions that accounts for non-linearity and a structural break when the spread between long- and short-term interest rates is the leading indicator. Estimation and model selection procedures allow to estimate and to identify time-varying non-linearity in a VAR. The model with time-varying thresholds predicts better the timing of recessions than models with constant threshold or with only a break.

The literature presents evidence that the spread, which represents the term structure of interest rates, is a reliable predictor of output growth (Estrella and Hardouvelis, 1991; Hamilton and Kim, 2002) and the surveys of Berk (1998) and Stock and Watson (2001)). The information contained in the spread reflects not only monetary policy but future expected short rates and changes in the risk premium (Hamilton and Kim, 2002). In fact, the spread keeps its predictive power when other indicators of monetary policy (Anderson and Vahid, 2001) and oil prices (Hamilton and Kim, 2002) are included in a regression to explain output growth. The spread is also a reliable predictor of the probability of recession (Lahiri and Wang, 1996; Estrella and Mishkin, 1998).

However, Haubrich and Dombrosky (1996), Dotsey (1998) and Stock and Watson (2001) report that the predictive power of the spread between long- and short-term interest rates has decreased after 1985. The failure of the indicator index of Stock and Watson (1989) to predict the 1990-91 recession has been attributed to the fact that the index relied heavily on the spread (Dotsey, 1998). In contrast, employing Markov-switching models to obtain the probability of recession, Lahiri and Wang (1996) showed that the spread managed to predict the last recession. Likewise, Dueker (1997) and Estrella and Mishkin (1998), using probit, demonstrate that the spread is still better than other leading indicators in predicting recessions for the US. The tests presented by Estrella et al. (2003) support the view that while there is no instability in the ability of the spread to predict recessions, but the ability of the spread to predict the economic growth is unstable. Recently, Chauvet and Potter (2002) questioned these results with findings of parameter instability in probit models.

The literature also presents evidence of non-linearities in models that use the spread to predict output growth (Galbraith and Tkacz, 2000; Anderson and Vahid, 2001). The inclusion of non-linearities improves the accuracy of predicting the probability of recession (Anderson and Vahid, 2001), while large spreads do not predict strong growth (Galbraith and Tkacz, 2000).

Regarding changes in the output growth series, an important stylized fact is that the variability of output growth decreased after 1984 (Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000). Regarding interest rates, Watson (1999) suggests that the variability of the US long-term interest rate has been increasing while the short-term interest rate is smoothed by the monetary authority. However, the results of the tests applied by Sensier and Van Dijk (2001) indicate that while there is evidence of structural break in short- and long-term interest rates, the evidence of a structural break in their spread is not strong.

Therefore, the literature suggests that a linear model between output growth and spread is not a proper representation of the dynamic responses between these variables because of parameter instability (Estrella et al., 2003; Stock and Watson, 2001), non-linearities (Galbraith and Tkacz, 2000; Anderson and Vahid, 2001) and changes in the variability of the output growth (Kim and Nelson, 1999; McConnell and Perez-Quiros, 2000). The structural break threshold VAR (SBTVAR) proposed in this paper is able to account for these characteristics and can be employed to generate more precise predictions of recessions.

This paper extends some previous results published in the literature in two issues. Structural breaks are necessary to time correctly direction-of-change predictions not only in linear (Pesaran and Timmermann, 2004) but also in non-linear models. The spread leads the 2001 recession (Stock and Watson, 2003) but the model with threshold and structural break is more efficient in extracting the information from the spread than a simple VAR is.

The remaining of this paper is organised as follows. Structural break threshold VARs (SBTVAR) are presented in section 2 that also includes estimation and specification procedures. In addition, the SBTVAR is applied to model the output growth and the spread and the estimates are compared with more restrictive specifications. Section 3 presents the definitions of recession and the loss function employed to evaluate forecasting performance. The evaluation of the in-sample and real-time performance in event forecasting of VARs, threshold VARs, structural break VARs and SBTVARs are also presented in section 3. Section 4 analyses real-time forecasts for the 2001 recession and compares the obtained results with other forecast evaluations presented in the literature. Section 5 summarises the main findings of this paper and concludes them.

2 Structural Break Threshold VAR

Threshold VARs are piecewise linear models with different autoregressive matrices in each regime, which is determined by a transition variable (one of the endogenous variables), a delay and a threshold (Tsay, 1998). Structural break models also divide the sample into two regimes but they are determined by a break-point and are not recurrent, allowing different dynamics before and after the break. Although non-linear models can capture some characteristics of structural break models (Koop and Potter, 2000; Koop and Potter, 2001; Carrasco, 2002), it may be the case that the break also implies changes in the parameters that determine the non-linearity. Univariate time-varying smooth transition models have been proposed by Lundbergh et al. (2003) and they have been applied to capture changes in seasonality of industrial production by Van Dijk et al. (2003). In this section, a VAR with threshold non-linearity and a structural break is proposed. In contrast with time-varying smooth transition models, structural break threshold models characterise abrupt changes from one regime to another. After discussing how to estimate and to verify whether there are thresholds and breaks in the data, the model is applied to US output growth and spread. The robustness of the estimates of the empirical exercise is verified by observing recursive estimates based on real-time data.

Define x_t as a $m \times 1$ vector of m endogenous variables $x_t = (x_{1t}, x_{2t}, ..., x_{mt})'$ and define the $m \times (mp+1)$ matrix $\mathbf{x_{t-1}} = (\mathbf{1}, \mathbf{x_{t-1}}, ..., \mathbf{x_{t-p}})$ where p is the autoregressive order, a structural break threshold VAR (SBTVAR) can be written as:

$$\begin{aligned} x_t &= \{ [(\mathbf{x_{t-1}}\beta_1)\mathbf{I_{1,t-d1}}(\mathbf{r_1}) + (\mathbf{x_{t-1}}\beta_2)(\mathbf{1} - \mathbf{I_{1,t-d}}(\mathbf{r_1}))]\mathbf{I_t}(\tau) \} + \\ & \{ [(\mathbf{x_{t-1}}\beta_3)\mathbf{I_{2,t-d_2}}(\mathbf{r_2}) + (\mathbf{x_{t-1}}\beta_4)(\mathbf{1} - \mathbf{I_{2,t-d}}(\mathbf{r_2}))](\mathbf{1} - \mathbf{I_t}(\tau)) \} + u_t \} \end{aligned}$$

where $I_{i,t-d_i}(r_i)$ is an indicator function that depends on a transition variable z, on a threshold r_i and on a delay d_i : $I_{i,t-d_i}(r_i) = \mathbf{1}(\mathbf{z_{t-d_i}} \leq \mathbf{r_i})$; and $I_t(\tau)$ is a indicator function that depends on a break-point τ : $I_t(\tau) = \mathbf{1}(\mathbf{t} \leq \tau)$. β_i are $(mp+1) \times m$ matrices of parameters. u_t is the $m \times 1$ vector of disturbances that is assumed to have a mean equal to zero and a constant $m \times m$ covariance matrix Σ . This supposition is easily substituted by constant variance conditional on the regime.

The SBTVAR has one threshold VAR (TVAR) in each sub-sample determined by the breakpoint. This means that the break affects also the parameters of the indicator functions that determines the regimes. Although it is possible to write a nested specification using logistic functions, the smooth analogous estimated by Lundbergh et al. (2003) does not consider changes in the transition function following the break. Allowing the restriction that $r_1 = r_2$, given that $d_1 = d_2$, the parameters of the dynamics are allowed to change in each sub-sample but not the parameters of the regime-switching function. The model with this restriction is called SBTVARc. If there is no threshold given that there is a break-point, a structural break VAR (SBVAR) is written as:

$$x_t = (\mathbf{x_{t-1}}\boldsymbol{\beta_1})\mathbf{I_t}(\boldsymbol{\tau}) + (\mathbf{x_{t-1}}\boldsymbol{\beta_2})(1 - \mathbf{I_t}(\boldsymbol{\tau})) + \mathbf{u_t}$$

In contrast if there is a threshold but no structural break, one has a threshold VAR (TVAR):

$$x_t = (\mathbf{x_{t-1}}\boldsymbol{\beta_1})\mathbf{I_{t-d}}(\mathbf{r}) + (\mathbf{x_{t-1}}\boldsymbol{\beta_2})(1 - \mathbf{I_{t-d}}(\mathbf{r})) + \mathbf{u_t}.$$

Finally, if there is no break or threshold, the last two specifications are simplified to a VAR.

2.1 Conditional Means based on Simulated DGPs

An interesting application of time-varying and threshold VARs is to capture changes in the predictive power of a variable x_{2t} on another variable x_{1t} . In this subsection, data from nested but different DGPs are simulated to observe the implications of a TVAR, SBVAR, SBTVARc and SBTVAR on the conditional mean $E(x_{1t}|x_{2t-1})$. The DGPs are described in Table 1. x_{2t} causes (Granger sense) x_{1t} in the lower regime of the TVAR, and in the first sub-sample of the SBVAR. This causality is also present in the lower regime of the first sub-sample of the SBTVARc and of the SBTVAR and with less intensity in this same regime of the second sub-sample. Note that SBTVARc is a restricted version of the SBTVAR because it has the threshold is the same across sub-samples. Therefore, the SBTVAR captures causality from x_{2t} to x_{1t} depending on the size of x_{2t-1} and also on the time period.

Figure 1 presents the conditional mean $(E(x_{2t}|x_{1t-1}))$ estimated by local linear regression using 10000 simulated values from each DGP assuming that the disturbances are normally distributed. Comparing the second, fourth and fifth panel, one can verify that the model with changing non-linearity has a smoother transition from one regime to another compared with the model with only the threshold. The SBVAR implies a different dynamics: it was possible to observe in the scatter plot a clear bifurcation for large values of x_{2t-1} . An interesting result of Figure 1 is that for values of x_{2t-1} between 1.75 and 3.25, around the TVAR's threshold of 2.5, it is possible to verify differences in the conditional means across models. These differences support the idea of building a modelling procedure to discriminate across these models. In addition, differences in conditional mean may matter for forecasting.

2.2 Estimation

Two methods have been employed to estimate TVARs in the literature: conditional least squares (Tsay, 1998) and maximum likelihood (Hansen and Seo, 2002). Tsay (1998) shows that conditional least squares are consistent estimators of the autoregressive coefficients, the delay and the threshold, and the covariance matrix. The suggested method employs a grid of values for the threshold (and delay) and the chosen threshold is the one that minimises the sum of squared residuals S(r) over the interval $[r_l, r_u]$ where $S(r) = T * trace\hat{\Sigma}(r)$, where T is the number of observations and $\hat{\Sigma}(r)$ is the estimated covariance matrix of the residuals for a given threshold value. This means that, conditional on each possible threshold, a VAR is estimated by least squares and the trace of the covariance matrix is computed. The estimated threshold is the one that minimises the objective function. The limits of the grid for the threshold are defined based on the rule that at least $100\pi\%$ of the observations must be in each regime, where $0 < \pi < 1$. Similar approach is employed to estimate unknown structural breaks. Values of π that are commonly found in the literature are .10 (Clements and Galvão, 2004) and .15 (Andrews, 1993).

Without formal proofs of consistency, Hansen and Seo (2002) suggest to use the maximum likelihood approach to estimate a threshold VAR with cointegration. The maximum likelihood estimator is based on the assumption that the errors are gaussian. In practice, the estimation algorithm is similar to the one of conditional least squares, the main difference is that the objective function to be minimized is the $log(det(\hat{\Sigma}(r)))$.

Both approaches can be employed to estimate the SBTVAR. Supposing that the delays, the autoregressive order and the transition variable are known, the matrices $\beta_1, \beta_2, \beta_3, \beta_4$ can be obtained by OLS given values of r_1, r_2 and τ . This means that one can concentrate the residual sum of squared errors and the likelihood function with respect to the thresholds and the break-point. Grids of possible values of thresholds and break-point can be defined supposing that at least $100\pi\%$ of the observations are available to estimate the autoregressive coefficients in each regime. For each possible combination of values inside the grids, one can compute $\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3, \hat{\beta}_4$ by OLS. Based these estimates, the residuals \hat{u}_t can be obtained and saved in the $T \times m$ matrix $\hat{\mathbf{u}}$. Using the residuals, the covariance matrix is consistently computed as $\hat{\Sigma}(r_1, r_2, \tau) = (\hat{\mathbf{u}}' \hat{\mathbf{u}})/\mathbf{T}$. The estimator of conditional least squares (CLS) is obtained by

$$\hat{r}_1, \hat{r}_2, \hat{\tau} = \min_{\substack{r_l \le r_1 \le r_u \\ r_l \le r_2 \le r_u \\ \tau_l \le \tau \le \tau_u}} T * trace(\hat{\Sigma}(r_1, r_2, \tau)).$$

Similarly the estimator of maximum likelihood (ML):

$$\hat{r}_1, \hat{r}_2, \hat{\tau} = \min_{\substack{r_l \le r_1 \le r_u \\ r_l \le r_2 \le r_u \\ \tau_l \le \tau \le \tau_u}} \log(\det(\tilde{\Sigma}(r_1, r_2, \tau))).$$

The maximum likelihood estimator is built assuming that the covariance matrices are the same for each regime. This assumption may not hold when applying to macroeconomic data with time-varying variances, but the estimator can be modified to allow regime-switching variances. SBTVAR has 4 regimes (2 regimes in each sub-sample), so that the conditional variance matrix $\hat{\Sigma}_i(r_1, r_2, \tau)$ is computed with the T_i observations of \hat{u}_t of regime *i*. The maximum likelihood estimator that allows changes in the regime-dependent variances (HML) is written as:

$$\hat{r}_{1}, \hat{r}_{2}, \hat{\tau} = \min_{\substack{r_{l} \leq r_{1} \leq r_{u} \\ r_{l} \leq r_{2} \leq r_{u} \\ \tau_{l} \leq \tau \leq \tau_{u}}} \left(\begin{array}{c} \frac{T_{1}}{2} \log(\det(\hat{\Sigma}_{1}(r_{1}, r_{2}, \tau))) + \frac{T_{2}}{2} \log(\det(\hat{\Sigma}_{2}(r_{1}, r_{2}, \tau))) + \frac{T_{3}}{2} \log(\det(\hat{\Sigma}_{4}(r_{1}, r_{2}, \tau))) + \frac{T_{4}}{2} \log(\det(\hat{\Sigma}_{4}(r_{1}, r_{2}, \tau))) + \frac{T_$$

Similarly, CLS, ML and HML estimators can be derived to estimate SBTVARc, SBVAR and TVAR. The comparative unbiasedness and efficiency in finite samples of those three estimators are investigated using a Monte Carlo exercise.

The properties of the CLS, ML and HML are evaluated for two sample sizes: T = 200and T = 400. The size of the sample in the empirical part is of around 200. In addition, different suppositions about the variance matrix of the disturbances are made: constant variance and variance changing with regimes; disturbances independent across equations or with some correlation. The DGPs are the same employed in the last section, described in Table 1.

Table 2 presents the mean of the estimates, their standard errors and average bias for each assumption on the covariance matrix, for each estimation method and for each DGP with 500 replications. The estimators are computed conditional on having at least 15% of the observations in each regime and at least 30% of the observations in each sub-sample. The results show bias in the estimation of the break-point $\hat{\tau}$ of the SBTVAR using CLS and ML when the disturbances' variance changes across regimes. Therefore, if there is any suspicion of possible changes in the variance across regimes in the SBTVAR, the HML is recommended. In the remaining of this paper, all the specifications (except the VAR) are estimated using the HML.

2.3 Choosing between VAR, TVAR, SBVAR, SBTVARc and SBTVAR

Even if one can estimate SBTVARs, it is not clear whether it is necessary to have time-varying thresholds to capture the dynamic structure of the data. Tests for a threshold in a SBVAR or for a break-point in a TVAR are complicated because of the discontinuity of the changes and the presence of nuisance parameters. The non-standard distribution of the supLM and supWald statistics for testing for unknown breaks and thresholds have been derived, respectively, by Andrews (1993) and Hansen (1996). In this paper, a convenient specification method is proposed based on the asymptotic bounds for LM and Wald tests derived by Altissimo and Corradi (2002). The authors show how to compute bounds based on the law of the iterated logarithm such that a decision rule is built for the rejection of the null. Altissimo and Corradi show that the decision rule is effective to choose correctly between a linear and a threshold model. In this section, selection criteria based on the bounds of supLM and supWald statistics are employed to discriminate between VAR, TVAR, SBVAR, SBTVARc and SBTVAR in a specific to general approach. The ability of this approach to discriminate between VAR specifications in finite samples is evaluated with a simulation exercise.

The decision rule for model selection employed in this paper uses asymptotic bounds $(1/2\ln(\ln(T)))$ and the maximum value of a Wald and a LM statistic over a grid of possible values for the nuisance parameter as proposed by Altissimo and Corradi (2002). The Wald and the LM statistics are computed using the sum of squared residuals (SSR) under the null and the alternative:

$$W(\theta_2) = n\left(\frac{SSR(\hat{\theta}_1) - SSR(\theta_2)}{SSR(\theta_2)}\right); LM(\theta_2) = n\left(\frac{SSR(\hat{\theta}_1) - SSR(\theta_2)}{SSR(\hat{\theta}_1)}\right).$$

The vector θ_1 has parameters such as thresholds and breaks of the model under the null and θ_2 has those parameters of the models under the alternative. The rule that ensures that type I and type II errors are asymptotically zero is that the model under the alternative must be chosen if the bounded $\sup_{\theta_2} \leq \theta_2 \leq \theta_2^U W(\theta_2)$ (or $\sup_{\theta_2} \leq \theta_2 \leq \theta_2^U LM(\theta_2)$) is larger than one. Specifically,

choose model under alternative if
$$BWald = \left[\frac{1}{2\ln(\ln(T))} \left[\sup_{\substack{\theta_2^L \le \theta_2 \le \theta_2^U}} W(\theta_2)\right]^{1/2}\right] > 1.$$

Similarly, the rule can also be written employing the $\sup_{\theta_2^L < \theta_2 < \theta_2^U} LM(\theta_2)$ statistic.

Based on the results of Lundbergh et al. (2003) that a specific-to-general approach can

specify carefully time-varying smooth transition models, a specific-to-general approach based on the asymptotic decision rules is employed to choose between a VAR, a TVAR, a SBVAR, a SBTVARc and a SBTVAR. In this model selection procedure, delays, transition variables and autoregressive order are assumed to be known and are the same for all specifications. The steps for choosing between those models are:

- (1) Estimate a TVAR and a SBVAR using the HML estimator described last section. Using the sum of squared residuals of those models and the one of a VAR, compute *BWald* (*BLM*). If none of the alternative hypothesis is rejected using the decision rule, the procedure finishes and the VAR is chosen. If at least one of the statistics suggests rejection of the VAR, then one of the next two step follows.
- (2.1) If *BWald* (*BLM*) with TVAR under alternative is larger than *BWald* (*BLM*) with SBVAR under the alternative, this step verifies whether the inclusion of a break improves the TVAR. This is done using two different alternative models estimated using HML: SBTVAR and SBTVARc. After computing *BWald* (*BLM*) statistics using the TVAR as restricted model, three models can be chosen: (a) if both statistics are smaller than 1, then the TVAR is chosen; (b) if the statistic with SBTVARc under the alternative is larger than the statistic with SBTVAR under the alternative, then SBTVARc is chosen; (c) if the statistic with SBTVAR under the alternative is larger than the SBTVAR, then SBTVAR is chosen.
- (2.2) If *BWald* (*BLM*) with SBVAR under alternative is larger than *BWald* (*BLM*) with TVAR under the alternative, this step verifies whether the inclusion of a threshold improves the SBVAR using estimated SBTVAR and SBTVARc under alternative. After computing *BWald* (*BLM*) statistics using the SBVAR as restricted model, three models can be chosen: (a) if both statistics are smaller than 1, then the SBVAR is chosen; (b) if the statistic with SBTVARc under the alternative is larger than the statistic with SBTVAR under the alternative, then SBTVARc is chosen; (c) if the statistic with SBTVAR under the alternative is larger than the SBTVAR is chosen.

Therefore, two bounded statistics are computed in each step, but step 2 can be avoided. The computation of the statistics requires the estimation of models under the null and alternative. Similar approach is employed by Gonzalo and Pitarakis (2002) using information criteria to define the number of thresholds (regimes) in a threshold autoregressive model.

The investigation of the finite sample properties of this model selection procedure in discriminating between a VAR, a TVAR, a SBVAR, a SBTVARc and a SBTVAR is done with a simulation exercise. The DGPs presented in Table 1 are employed. The frequency of selection of each model in 1000 replications using a BWald and BLM statistic are presented in Table 3. The data is simulated from the DGPs drawing from a normal distribution under assumptions of constant variance and of changing variance. The size of samples of simulated data are 200 and 400.

The selection frequencies presented in Table 3 show that the modelling strategy is successful in discriminating between VARs, TVARs and SBVARs. Because changes in the thresholds across sub-samples do not imply in the estimation of extra autoregressive parameters, the selection rule is generally not able to discriminate between SBTVARc and SBTVAR. As the sample increases, the selection rule discriminates between TVARs and SBTVARs when the SBTVAR is the DGP. When the TVAR is the DGP, the selection rule chooses the SBTVAR relatively frequent. There are no large differences in the selection frequencies on employing either the LM or the Wald statistics (similar to the results of Altissimo and Corradi (2002)). Heteroscedasticity reduces the power of the selection rule on discriminating between TVAR and SBTVAR, but it does not affect significantly the selection frequencies of other models.

These selection frequencies are not worse than previous papers that have proposed methods to discriminate between linear and non-linear specifications (Gonzalo and Pitarakis (2002) and Strikholm and Teräsvirta (2003)). Figure 1 helps to understand why it is hard to discriminate between these nested versions of TVAR and SBTVAR in small samples: their main difference is in the smoothness of the transition when changing from causality to non-causality. Yet the distinction between these models increases with the sample size.

Therefore, the modelling selection scheme based on the BWald (BLM) contributes to the literature on discriminating between time-varying and recurrent regime behaviour (Carrasco, 2002) because it is successfull in identifying either a threshold or a break in the data. In addition, the scheme is able to successfully discriminate between the SBTVAR and more restrictive specifications in larger samples (400 observations) even under regime-dependent heteroscedasticity. This scheme is applied to US data in the next subsection.

2.4 VAR, TVAR, SBVAR and SBTVARs to model US output growth and spread

The application of the SBTVAR to US output growth and the spread between the longand the short-term interest rate arises from the evidence in the literature that the spread predicts negative output growth but it is not useful when there is a boom (Galbraith and Tkacz, 2000) jointly with the evidence that the spread could have lost its predictive power (Dotsey, 1998) and the evidence that the volatility of output growth has decreased (McConnell and Perez-Quiros, 2000). The quarterly growth rate of output y_t employed in this subsection is computed from the 2003:Q4 vintage of the real output from 1953:Q2 until 2002:Q4, obtained from www.phil.frb.org/econ/forecast/reaindex.html. The spread S_t is computed using the interest rates of 10-year Treasury bonds and 3-month Treasury bills, obtained from www.stls.frb.org/fred. The quarterly frequency is obtained by averaging the monthly spread over the quarter.

The estimates (by HML) of all the possible alternative hypotheses of the modelling procedure of last subsection are presented in Table 4. The 90% confidence intervals for the thresholds and the break-point are computed applying bootstrapping¹. The estimates are obtained assuming at least 15% of the observations in each regime and at least 30% of the observations in each sub-sample, and at least 20% of the observations of each sub-sample in each regime in case of SBTVARs. All models are estimated for the same autoregressive order – p = 3 – that has been chosen with the Schwarz information criteria applied to the VAR. The delay is estimated using an additional loop in the grid search assuming that $d_l = 1$ and $d_u = 4$.

The information criteria (SIC) suggests gains from the presence of a break-point and a threshold, but the model with smaller SIC is the TVAR. The SBTVAR implies a reduction of 4% of the SIC compared with the SBTVARc with only the estimation of one more parameter.

The thresholds of the TVAR and the SBTVARc have similar values, and their value is not statistically different from the r_1 of the SBTVAR. The break-points are statistically different across the models, but the break-point of the SBVAR and the SBTVAR are not far from each other: 1981:1 and 1985:2. The 1985 break implies that the estimated variance of the output growth equation after the break is 1/3 of the variance before the break. Similar sized variance reduction is also observed in the SBTVAR estimates but not in the SBTVARc. A break around 1985 is associated with the decrease in the volatility of output growth (McConnell and Perez-Quiros, 2000). In addition, Chauvet and Potter (2002) show that the presence of break in 1985 improves forecasts using the spread as leading indicator and the probit as a filter.

Table 5 presents the BWald and BLM for all possible tests of the two-step model selection procedure. In the first step, the TVAR is chosen and in the second step the SBTVAR. This results indicate that models with time-varying thresholds improve significantly over models with constant thresholds and that the SBTVAR specification is chosen by the data. The table also presents BWald and BLM to verify the need of an extra break in a SBVAR and of an extra

¹Data is simulated from the estimated model by bootstrapping from the residuals. The simulated data is employed to estimate thresholds and/or break (by HML together with the autoregressive parameters). The procedure is repeated 500 times and the limits of the 90% empirical interval are computed.

threshold in a TVAR. There is evidence of a second break, but this model is not employed in the forecasting evaluation because a careful analysis shows that this break is associated with the effect of the 1979-1982 monetary policy in the dynamics of the spread and it does not affect the predictive performance of the spread.

Summarising, the results suggest that there is changing non-linearity in the dynamics between US output growth and the spread. The SBTVAR captures a significantly increase in the threshold value after a break in 1981. This implies that the ability of the spread in predicting output growth has changed, but it will be checked whether this means that the spread is not a reasonable leading indicator in a forecasting exercise in section 3.

2.4.1 Sensibility to new information: Recursive Estimation with Real-time data

The SBTVAR is able to capture interesting features of the dynamic relationship between the spread and the output-growth. However, if the purpose of the modeler is to use it for forecasting, the parameters must be robust to the arrival of new information. In this section, real-time output data is employed to recursively estimate the SBTVAR.

The first sample used to estimate the parameters is from 1953:Q2 to 1985:Q4. This sample uses all the information available until 1986:Q1. At each new point in time, the models are re-estimated, using the newer data vintage. This new vintage may include large revisions of the current and previous data. Two major data revisions are discussed in Croushore and Stark (2001): from GNP to GDP in 1992 and changes in the chain-weighting in 1996. There is also a major revision in 1999:Q4 and 2000:Q1 because of changes in the national account tables. In the period of these revisions, the data availability shortened and starts in 1959:Q1. Thus it is expected larger changes in the parameters in those periods.

For comparative purposes, a TVAR, a SBVAR and a SBTVARc are also estimated recursively. Thresholds, break-point and delays estimated with information available including the data indicated are presented in Figure 2. The revisions have impact in all estimates. The delay parameters are stable over time, although some instability is found in the delay of the SBTVARc. The break-point of the SBVAR has three main values: around 1979:4 with data until 1991, around 1973:1 with data from 1991 to 1997, and around 1985 with data after 1998. The breaks could be associated with the productive changes in beginning of the 1970's, the monetary policy regime change in 1979 and with the decreasing volatility in the beginning of the 1990's. This stability is not found in the estimation of the break-point of the SBTVAR with data vintages after 1997. The estimates of break-points of these newer vintages oscillate between 1985 and 1972. This oscillation of break-points between the early 1970's changes in productivity and the 1980's decrease in variability of output growth is also found by Chauvet and Potter (2002). Similar behaviour is found in the estimation of the thresholds: stability until 1996 for all the models and instability in the estimation of the second threshold of the SBTVAR model after that.

Summarising, there is some instability in the definition of the break-point of the SBTVAR after 1997. This is not captured by the small 90% confidence interval presented earlier because when using all the information the break-point is well identified. This sensibility may affect out-of-sample forecasts in real-time.

3 Predicting Recessions

This section evaluates whether the proposed model, SBTVAR, is able to extract information from a leading indicator - the spread - in such a way that it improves forecasts of recessions.

3.1 Definition of Recession

Recessions are not directly observable in the data, but recessive periods can be identified based on simple rules applied to series that represent the aggregate economy. The rules employed in this paper are based on those employed in the algorithms to identify turning points of classical business cycles. The advantage of employing simple rules to classify recessions is that the defined event can also be identified in forecast sequences, implying that probabilities of recession can be computed.

In this paper, two definitions of recessions are employed. The first definition of recession is: two consecutive quarters of negative growth in the next five quarters (Fair, 1993). Thus, I state that the quarter t is in recession, so that $R_t = 1$, when there are two consecutive quarters of negative growth in the window from t to t + 4. This definition of recession anticipates the NBER dates, so that the ability of predicting this event means being able to anticipate NBER turning points.

The second definition is based on a rule for identification of turning points: there is a recession at t if either $(y_{t-1} < 0 \text{ and } y_t < 0)$ or $(y_t < 0 \text{ and } y_{t+1} < 0)$. The definition of this event is relevant in real-time because normally only y_{t-1} is known and it is subjected to revision. This is a rare event that occurs only in 10% of the quarters of the sample. An advantage of the definition of this event is that identifies the same quarters in recession as the NBER with data after 1983, which comprises the out-of-sample period employed in the forecasting evaluation.

The computation of the predictive probabilities of these events using estimated VARs em-

ploys simulation of forecast sequences in which the events are identified in such a way that the predictive probability is the proportion of occurrences of the event after simulating a large number of sequences (Anderson and Vahid, 2001). The complete procedure is described in the appendix.

3.2 Measuring Loss from Event Forecasting

A forecaster has to decide whether to predict a recession or not based on a model that generates probabilities of recessions $P_t = \Pr[recession_t | \Omega_{t-1}]$ where Ω_{t-1} is the set of information available at t-1. The gain obtained by correctly predicting a recession is L(h) and the loss of wrongly predicting a recession is L(fa). Thus, the loss function of the individual is L = L(fa) - L(h). The individual will identify a recession when $P_t \ge c_t$, therefore the decision of calling a recession will be taken depending on the value of the cut-off c_t and the predicted probabilities from the model. Define R_t as the binary variable that defines whether the recession has occurred, then the gain of correctly calling a recession is $L(h) = f(h(c_t, P_t, R_t))$. In particularly, the gain from the correct prediction as the percentage of success/hits (so each hit gives exactly the same gain) is

$$L(h) = H(c) = \frac{\sum_{t=1}^{n} R_t \mathbf{1}(\mathbf{P_t} \ge \mathbf{c})}{n\bar{R}},$$

where $\mathbf{1}(.)$ is an indicator function and \overline{R} is the unconditional probability of the event recession. The loss from false alarms is equal to the proportion of wrong predictions of recessions over number of recessive events, then the impact on a false alarm in the individual's loss is the same as the hits:

$$L(fa) = FA(c) = \frac{\sum_{t=1}^{n} (1 - R_t) \mathbf{1}(\mathbf{P_t} \ge \mathbf{c})}{n\bar{R}}.$$

Therefore, the loss function is:

$$L(c) = \frac{\left(\sum_{t=1}^{n} (1 - R_t) \mathbf{1}(\mathbf{P_t} \ge \mathbf{c})\right) - \left(\sum_{t=1}^{n} R_t \mathbf{1}(\mathbf{P_t} \ge \mathbf{c})\right)}{n\bar{R}}.$$
(1)

This loss function has resemblance with the Kuipers Score (Pesaran and Skouras, 2002) but has a weight $(1/n\bar{R})$ for false alarms instead of $1/(1 - n\bar{R})$. Because the unconditional mean of the recession is around 0.16 (for event A), the proposed loss function gives more weight to the losses from false alarms than the Kuipers Score. This loss function has the advantage of taking into account the fact that the loss of wrongly predicting a recession is equivalent to the cost of not predicting a recession, although the gains of correctly predicting a recession are higher than the ones of correctly predicting the expansion phase. Asymmetry in the loss function to evaluate recessions has been also argued by Fintzen and Stekler (1999).

The optimal choice of c_t is the one that minimises the loss function conditional on the past values of R_t and P_t . In practice this can be done by calibrating the value of c using in-sample forecasts (for t = 1, ..., t - 1), so that

$$\hat{c}_t = \min_{c_L \le c \le c_U} (L(fa(c)) - L(h(c))).$$
(2)

The grid for the search is defined assuming that c_L is equal to unconditional probability of the event (\bar{R}) and $c_U = 0.9$. The events to be predicted have $\bar{R}_a = 0.16$ and $\bar{R}_b = 0.10$, so the upper value of the grid allows a quite large interval to take into account characteristics of the model employed to obtain P_t . The lower probability of the grid follows Birchenhall et al. (1999) that argue in favour of a cut-off equal to the unconditional mean of the event because it allows to check if the model adds information to a *naive* model that always predicts the unconditional mean. Based on \hat{c}_t estimated with in-sample predictions until t-1, the optimal decision for the individual is to call a recession when $P_t \geq \hat{c}_t$. This decision rule has an associate loss function $L = L(fa(\hat{c})) - L(h(\hat{c}))$. Therefore, recession forecasters are ranked using this loss function calculated for recursive forecasts for t = 1, ..., n.

Even though the defined loss function is able to measure whether the model forecasts correctly the timing of the recession, the accuracy of the predictions could be also evaluated employing the quadratic probability score (QPS). This measure of accuracy is based on a quadratic loss function which is also used to derive the mean of squared forecast errors of point forecasts. The QPS is computed as follows:

$$QPS = \sum_{t=1}^{n} (P_t - R_t)^2.$$
 (3)

The differential of this measure is that it does not depend on the definition of a cut-off and gives the same weight for large and short forecast errors and also for recession and expansions.

3.3 Evaluating the Predictions of Probability of Recessions

The ability of the models to predict the probability of recession is evaluated under two scenarios. The first one uses all the information available at 2003:Q4 which includes output growth data until 2003:Q3. In this case, in-sample forecasts of the probabilities of each event are evaluated. Using the parameters estimated for the full sample, information on output growth and spread until t-1 is used to predict the probability of the event at t. The second scenario uses real-time

information. The forecast for t employs the t data vintage, implying that information until t-1 is employed to estimate the model.

In both scenarios, it is necessary to define the cut-off \hat{c}_t such that a recession is predicted. In the first scenario, a constant cut-off of .5 is employed for all the models, allowing better comparison of in-sample performance of the models. This value is also employed by Birchenhall et al. (1999), Chauvet and Piger (2003) and Dueker (2004). In real-time, an automated procedure is employed to estimate the optimal cut-off in each point in time as described in section 3.2. The procedure employs events that occurred four quarters before t - 1 (i.e., t - 5), because otherwise they would not be defined in real-time, and the past information available in a rolling window of 15-years of in-sample forecasts (60 quarters).

The results of the evaluation are presented in Table 6. There are gains of accuracy and timing from having jointly thresholds and a break-point in predicting the in-sample recessions as defined by event A. The gains of accuracy of the SBTVAR compared with the VAR are of 30%. In addition, while the VAR predicts correctly 10% of the recession periods, the SBTVAR does that in 45% of them without creating false alarms. The gains of accuracy do not occur when predicting event B, but the SBTVAR is still the best for timing the recessions. The SBTVAR is able to predict 2 out of the 6 recessive periods that happened after 1986 while the VAR is not able to predict recessions. Plots of the predicted probabilities of each model for each data vintage are presented in Figures 2 and 3.

The results using recursive estimation and real-time data show that the instability in the estimation the SBTVAR is translated to a weak forecast performance. Given the short sample sizes of the real-time exercise, it is reasonable to argue that is necessary all sample information to have good estimates of thresholds and breaks presented in the last section. In real-time, the TVAR is the best model to predict event A and the VAR is the best model in predicting event B. This suggests that non-linearity is important in forecasting longer horizons because event A requires predictions of output growth up to 5 steps-ahead. This result also suggest that the TVAR is a robust specification that can be successfully employed in real-time.

Summarising, gains from predicting recessions using SBTVARs are strong only when all sample is employed to estimate a break and thresholds. The TVAR and the VAR are robust specifications to extract the information from the spread using real-time data. Non-linearity is important when predicting recession events defined in longer horizons.

4 Predicting the 2001 Recession

The analysis of models and leading indicators to predict output growth during the 2001 recession is presented by Stock and Watson (2003), while predictions of the probability of recession have been evaluated by Dueker (2002), Chauvet and Potter (2002), Chauvet and Piger (2003) and Dueker (2004). The results indicate that, with the information available until the third quarter of 2000, it is possible to predict a recession for 2001:Q2, while the NBER only declared a peak in March 2001 using the information available in November 2001. In this section, the predictions of the probability of recession for 2000-2002 from the models evaluated in the last section are presented in comparison with other results in the literature. An important warning is that the definitions of recessions of this work and the cited papers are not the same, but even so a comparison gives an indication on whether the model proposed in this paper is really reasonable to predict recessions compared with other alternatives.

Table 7 presents the predicted probability of recession of events A and B for each quarter of 2000 to 2002 using real-time data and the optimal cut-off for each point in time. The probability of two quarters of negative growth in the next 5 quarters estimated with the SBTVAR is of 66% with the 2000:Q4 vintage (data available until 2000:Q3). This is a strong sign of recession as argued by Dueker (2004) and it is larger than the other specifications. The Qualitative VAR of Dueker (2004) – that uses the information on output growth, the spread and inflation available until 2000:Q4 to predict whether the probability of a latent variable is equal to zero – predicts a recession with a probability larger than 50% in 2001:Q3 and 2001:Q4. The predictions of Chauvet and Potter (2002) of the probability of recession using a probit with a break in 1985 and with the spread as leading indicator are of 90% for the 12-month period starting in January 2001. The probability of recessions for the same period is only of 45% when a break is not estimated. Similarly, the predictions of recession computed in 2000:Q4 are of 66% with the SBTVAR and of 25% from the TVAR. This shows the relevance of the break in correctly timing recessions using the spread.

The analysi of predictions of event B are important because this event dates the 2001 recession as the NBER² that is the ultimate date reference employed by other authors. In addition, it allows to evaluate the ability of predicting recession in short horizons. The SBTVAR predicts a recession in 2001:Q2 (probability of recession is larger than the cut-off), implying that

²Dueker (2004) argues that because the NBER peak was dated in March 2001, which is after the middle of the quarter, the first quarter in recession is the second one and because the trough was dated in November 2001, the last quarter of recession is 2001:Q4. I follow the quarterly dates presented in the NBER website (www.nber.org) to affirm that event B gets exactly the quarters of the NBER recessions.

with information until 2001:Q1, it is possible to identify a recession in 2001:Q2 and 2001:Q3. An earlier warning of recession (2001:Q1) is given using the VAR. This confirms the results of Stock and Watson (2003) that the spread is a good leading indicator of the 2001 recession although this was not true when predicting the 1990/91 recession. The probit model with coefficients changing by Markov-Switching proposed by Dueker (2002) also gives an recession sign for the 2001:Q2 using the three-month difference of the composite leading indicator. In contrast, the results of the Markov-Switching model applied to real-time output growth presented by Chauvet and Piger (2003) indicate a probability of recession higher than 50% only in 2001:Q3. This shows the relevance of the information of a leading indicator for real-time prediction.

Based on these results, one can conclude that the SBTVAR performs well in predicting the 2001 recession. Two factors are responsible for that: (a) time-varying non-linearity - a break and different thresholds in each sub-sample - is needed to predict recessions in longer horizons using the spread as leading indicator; and (b) the spread is a good leading indicator for the 2001 recession.

5 Conclusions

This paper proposes a VAR with time-varying threshold non-linearity, called structural break threshold VAR (SBTVAR). When applied to US output growth and the spread (long- minus short-term interest rate), the SBTVAR is able to characterise changes in the predictive ability of the spread and in the volatility of the output growth. Real-time forecasts for the timing of the 2001 recession are improved by allowing time-varying thresholds.

A maximum likelihood (HML) estimator for the SBTVAR is shown to jointly estimate thresholds and a break-point without bias in finite samples. A model selection procedure based on asymptotic bounds of supLM and supWald statistics (Altissimo and Corradi, 2002) is proposed to decide whether there is a break and/or a threshold in a VAR. An evaluation of this selection procedure in finite samples shows that it is generally able to choose the correct model between a VAR, a threshold VAR, a structural break VAR and a SBTVAR. When this selection procedure is applied to a VAR of US output growth and the spread, it suggests time-varying threshold non-linearity. The SBTVAR captures a significantly increase in the threshold value and a decrease in the variance of the output-growth equation after a break in 1981. However, the estimates are sensible to the arrival of new information from new vintage data.

The SBTVAR is compared with a VAR and VARs with either breaks or thresholds in their ability to predict recessions. Two recession events are defined based on forecast sequences output growth: event A generally anticipates NBER turning points and event B mimics the turning points after 1983. The timing of predictions are evaluated using a loss function that gives equal weights to hits and false alarms, and the accuracy is assessed using the quadratic probability score. The results indicate that: (a) gains from predicting recessions using SBTVARs are stronger only when all information is employed to estimate a break and thresholds; (b) TVARs and VARs are robust specifications to extract the information from the spread using real-time data; and (c) non-linearity is important when predicting recession events defined in longer horizons. A comparison of the predictions for 2001 recession from the SBTVAR with other models presented in literature shows that the SBTVAR performs well. Two factors are responsible for that: time-varying non-linearity is needed to predict recessions in longer horizons using the spread and the spread is a good leading indicator for the 2001 recession.

The proposed SBTVAR could be employed in future research to extract information from other leading indicators or from the CLI. Based on the evidence of structural breaks in many macroeconomic time series (Sensier and Van Dijk, 2001) and of non-linearity in some series (Stock and Watson, 1999), the SBTVAR could also be employed to model dynamic relations between macroeconomic variables, such as unemployment, inflation and output growth.

References

- Altissimo, F. and Corradi, V. (2002). Bounds for inference with nuisance parameters present only under the alternative, *Econometrics Journal* 5: 494–519.
- Anderson, H. M. and Vahid, F. (2001). Predicting the probability of a recession with nonlinear autoregressive leading indicator models, *Macroeconomic Dynamics* 59: 482–505.
- Andrews, D. W. K. (1993). Tests for parameter instability and structural change with unknown change point, *Econometrica* 61: 821–56.
- Berk, J. M. (1998). The information content of the yield curve for monetary policy: A survey, De Economist 146: 303–20.
- Birchenhall, C. R., Jensen, H., Osborn, D. and Simpson, P. (1999). Predicting u.s. businesscycle regimes, *Journal of Business and Economic Statistics* 17: 79–97.
- Carrasco, M. (2002). Misspecified structural change, threshold and markov switching models, Journal of Econometrics 109: 239–73.
- Chauvet, M. and Piger, J. M. (2003). Identifying business cycle turning points in real time, Federal Reserve Bank of St. Louis Review pp. 47–61.

- Chauvet, M. and Potter, S. (2002). Predicting a recession: Evidence from the yield curve in the presence of structural breaks, *Economics Letters* **77**: 245–53.
- Clements, M. P. and Galvão, A. B. C. (2004). A comparison of tests of non-linear cointegration with an application to the predictability of the US term structure of interest rates, *International Journal of Forecasting* forthcoming.
- Croushore, D. and Stark, T. (2001). A real-time dataset for macroeconomists, *Journal of Econometrics* **105**: 111–30.
- Don't Mention the R-Word: Are Economic Forecasters Wishful Thinkers or Wimps? (2001). The Economist, printed edition March 1.
- Dotsey, M. (1998). The predictive content of the interest rate term spread for future economic growth, *Federal Reserve of Richmond, Economic Quartely* 84: 31–51.
- Dueker, M. J. (1997). Strengthening the case for the yield curve as a predictor of US recessions, Federal Reserve Bank of St. Louis Review mar./apr.: 41–51.
- Dueker, M. J. (2002). Regime-dependent recession forecasts and the 2001 recession, Federal Reserve Bank of St. Louis Review 84: 29–36.
- Dueker, M. J. (2004). Dynamic forecasts of qualitative variables: A Qual VAR model of u.s. recessions, Journal of Business and Economic Statistics, forthcoming.
- Estrella, A. and Hardouvelis, G. A. (1991). The term structure as a predictor of real economic activity, *Journal of Finance* **46**: 555–76.
- Estrella, A. and Mishkin, F. S. (1998). Predicting US recessions: Financial variables as leading indicators, *Review of Economics and Statistics* 80: 45–61.
- Estrella, A., Rodrigues, A. P. and Schich, S. (2003). How stable is the predictive power of the yield curve? Evidence from Germany and the United States, *Review of Economics and Statistics* 85: 629–44.
- Fair, R. C. (1993). Estimating event probabilities from macroeconometric models using stochastic simulation, in J. H. Stock and M. W. Watson (eds), Business Cycles, Indicators, and Forecasting, NBER, University of Chicago Press, Chicago, pp. 157–78.
- Fintzen, D. and Stekler, H. O. (1999). Why did forecasters fail to predict the 1990 recession?, International Journal of Forecasting 15: 309–23.
- Galbraith, J. W. and Tkacz, G. (2000). Testing for asymmetry in the link between the yield spread and output in the G-7 countries, *Journal of International Money and Finance* 19: 657–672.
- Gonzalo, J. and Pitarakis, J.-I. (2002). Estimation and model selection based inference in single and multiple threshold models, *Journal of Econometrics* **110**: 319–52.

- Hamilton, J. D. and Kim, D. H. (2002). A re-examination of the predictability of economic activity using the yield spread, *Journal of Money, Credit and Banking* **34**: 340–60.
- Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis, *Econometrica* **64**: 413–30.
- Hansen, B. E. and Seo, B. (2002). Testing for two-regime threshold cointegration in vector error correction models, *Journal of Econometrics* 110: 293–318.
- Haubrich, J. G. and Dombrosky, A. M. (1996). Predicting real growth using the yield curve, Federal Reserve Bank of Cleveland, Economic Review 32: 26–34.
- Kim, C.-J. and Nelson, C. R. (1999). Has the US economy become more stable? A Bayesian approach based on a Markov-switching model of the business cycle, *Review of Economics* and Statistics 81: 608–16.
- Koop, G. and Potter, S. M. (2000). Nonlinearity, structural breaks, or outliers in economic time series?, in W. A. Barnett, D. F. Hendry, S. Hylleberg, T. Teräsvirta, D. Tjostheim and A. Würtz (eds), Nonlinear Econometric Modeling in Time Series, Cambridge University Press, Cambridge, pp. 61–78.
- Koop, G. and Potter, S. M. (2001). Are apparent findings of nonlinearity due to structural instability in economic time series?, *Econometrics Journal* 4: 37–55.
- Lahiri, K. and Wang, J. G. (1996). Interest rate spreads as predictors of business cycles, in G. S. Maddala and C. R. Rao (eds), Handbook of Statistics, Vol. 14, Elsevier, Amsterdam, pp. 297–315.
- Lundbergh, S., Teräsvirta, T. and Van Dijk, D. (2003). Time-varying smooth transition autoregressive models, *Journal of Business and Economics Statistics* **21**: 104–21.
- McConnell, M. M. and Perez-Quiros, G. (2000). Output fluctuations in the United States: What has changed since early 1980s?, *American Economic Review* **90**: 1464–76.
- Pesaran, M. H. and Skouras, S. (2002). Decision-based methods for forecast evaluation, in M. P. Clements and D. F. Hendry (eds), A Companion to Economic Forecasting, Blackwell, Oxford, pp. 241–67.
- Pesaran, M. H. and Timmermann, A. (2004). How costly is it to ignore breaks when forecasting the direction of a time series?, *International Journal of Forecasting (forthcoming)*.
- Sensier, M. and Van Dijk, D. (2001). Short-term volatility versus long-term growth: Evidence in US macroeconomic time series, Centre for Growth and Business Cycle Research, University of Manchester, Discussion Paper 8.
- Stock, J. H. and Watson, M. W. (1989). New indexes of coincident and leading economic indicators, NBER Macroeconomics Annual 4: 351–94.

- Stock, J. H. and Watson, M. W. (1999). A comparison of linear and nonlinear univariate models for forecasting macroeconomic time series, in R. F. Engle and H. White (eds), *Cointegration, Causality and Forecasting: A Festschrift in Honour of Clive Granger*, Oxford University Press, Oxford, pp. 1–44.
- Stock, J. H. and Watson, M. W. (2001). Forecasting output and inflation: The role of asset prices, NBER Working Paper 8180.
- Stock, J. H. and Watson, M. W. (2003). How did leading indicator forecasts do during the 2001 recession?, pp. 71–90.
- Strikholm, B. and Teräsvirta, T. (2003). Determining the number of regimes in a threshold autoregressive model using smooth transitions, *Department of Economic Statistics, Stockholm School of Economics (mimeo)*.
- Tsay, R. S. (1998). Testing and modeling multivariate threshold models, Journal of American Statistical Association 93: 1188–1202.
- Van Dijk, D., Strikholm, B. and Teräsvirta, T. (2003). The effects of institutional and technological change and business cycle fluctuations on seasonal patterns in quarterly industrial production series, *Econometrics Journal* 6: 79–98.
- Watson, M. W. (1999). Explaining the increased variability in long-term interest rates, Federal Reserve Bank of Richmond, Economic Quaterly 85: 71–96.

A Algorithm to obtain predictive probabilities from the models

The procedure to extract the probabilities of event A and B from the models is the same as the one described by Anderson and Vahid (2001). Define $\mathbf{X^{t-1}} = \{\mathbf{x_{t-1}}, \mathbf{x_{t-2}}, ..\mathbf{x_1}\}$ as the history of x_t and $x_t = f(\mathbf{X^{t-1}}; \mathbf{\Gamma}) + \mathbf{u_t}$ as the forecasting model where $\mathbf{\Gamma}$ is the matrix of parameters, including thresholds and break when they are defined in the specification, and $\mathbf{u_t}$ are iid with $Var(\boldsymbol{\epsilon_t}) = \boldsymbol{\Sigma}$. Given $\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\Sigma}}$, the trial sequence of forecasts for $\{\mathbf{x_t}, \mathbf{x_{t+1}}, \mathbf{x_{t+2}}, \mathbf{x_{t+3}}, \mathbf{x_{t+4}}\}$ conditional on $\mathbf{X^{t-1}}$ is built as follows. A random vector $\mathbf{u_t}$ is drawn by bootstrap from the residuals $\hat{\mathbf{u}_t}$ and it is used to calculate $\hat{\mathbf{x}_t}$, given $\mathbf{X^{t-1}}$ and $\hat{\boldsymbol{\beta}}$. $\hat{\mathbf{x}_t}$ is added to "history" to form $\hat{\mathbf{X}^{t}}$. Then a new draw ($\boldsymbol{\epsilon_{t+1}}$) is made from the residuals and it is employed to calculate $\hat{\mathbf{x}_{t+1}}$, given $\hat{\mathbf{X}^t}$ and $\hat{\boldsymbol{\beta}}$ and to form $\hat{\mathbf{X}^{t+1}}$. This procedure is continued until the sequence of forecasts is complete $\{\hat{\mathbf{x}_t}, \hat{\mathbf{x}_{t+1}}, \hat{\mathbf{x}_{t+2}}, \hat{\mathbf{x}_{t+3}}, \hat{\mathbf{x}_{t+4}}\}$. This sequence of forecasts can be called S_1 , and the same trial is repeated to obtain a set of 2000 forecast sequences. The probability of event A (B) is the proportion of these 2000 sequences in which the event A (B) occurs (P_t). In the case of event B, information of $\mathbf{x_{t-1}}$ is added to the sequence of forecasts to define whether the event

is identified in each sequence.

In the case of threshold VARs, the model can be also written as $\mathbf{x}_{t}^{\mathbf{j}} = \mathbf{f}^{\mathbf{j}}(\mathbf{X}^{t-1}; \mathbf{\Gamma}^{\mathbf{j}}) + \mathbf{u}_{t}^{\mathbf{j}}$, where j = 1, 2 for models with two regimes and j = 1, 2, 3, 4 for structural threshold models. Therefore, $Var(\mathbf{u}_{t}^{\mathbf{j}})$ depends on the regime (defined by the threshold and the transition variable), so for each regime with different number of observations T_{j} $(T = \sum_{j=1}^{s} T_{j})$, there is a different $\mathbf{\Sigma}^{\mathbf{j}}$ and $\mathbf{u}_{t}^{\mathbf{j}}$ is supposed to be multivariate normal with variance $\mathbf{\hat{\Sigma}}^{\mathbf{j}}$. In this framework, for each step to obtain the forecast sequences (h = 0, ..., 4) for, say, a two-regime threshold model, either vector $\mathbf{\ddot{u}}_{t+\mathbf{h}}^{\mathbf{i}}$ is drawn from $\mathbf{\hat{u}}_{t}^{\mathbf{l}}$ or vector $\mathbf{\ddot{u}}_{t+\mathbf{h}}^{\mathbf{i}}$ is drawn from $\mathbf{\hat{u}}_{t}^{\mathbf{i}}$ depending on $\hat{S}_{T+h-1-d} < r$ or $\hat{S}_{T+h-1-d} > r$. Then these vector are employed to compute $\mathbf{\hat{x}}_{t+\mathbf{h}}$ that includes the transition variable that defines the regimes $\hat{S}_{T+h-1-d}$. In the case of structural break VARs, the residuals are also drawn conditional on the sub-sample, allowing the variance to change depending on the period.

		Tab	<u>le 1</u> Definit	tion of	DGPs.
			DGP: '	VAR	
$x_{1t} =$	($0.4x_{1t-1} +$	$0.8x_{2t-1} +$	u_{1t})	
$x_{2t} =$	(0.5 +		$0.8x_{2t-1} +$	$u_{2t})$	
			DGP: T	VAR	
$x_{1t} =$	{($0.4x_{1t-1} +$	$0.8x_{2t-1} +$	$u_{1t}^1)$	$I(x_{2t-1} {\leq} 2.5) {+}$
	($0.4x_{1t-1} +$		$u_{1t}^2)$	$(1 - I(x_{2t-1} \le 2.5))\}$
$x_{2t} =$	(0.5+		$0.8x_{2t-1} +$	$u_{2t})$	
			DGP: SI	BVAR	
$x_{1t} =$	{($0.4x_{1t-1} +$	$0.8x_{2t-1} +$	u_{1t}^{1})	$I(t \le \tau) +$
	($0.4x_{1t-1} +$		$u_{1t}^2)$	$(1-I(t \le \tau))\}$
$x_{2t} =$	$\{(0.4+$		$0.8x_{2t-1} +$	$u_{2t}^{1})$	$I(t \le \tau) +$
	(0.6+		$0.8x_{2t-1} +$	$u_{2t}^2)$	$(1 - I(t \le \tau))\}$
			DGP: SB	TVAR	с
$x_{1t} =$	{[($0.4x_{1t-1}+$	$0.8x_{2t-1}+$	$u_{1t}^1)$	$(I(x_{2t-1} \le 2.5)I(t \le \tau)) +$
	($0.4x_{1t-1} +$		$u_{1t}^2)$	$(1 - I(x_{2t-1} \le 2.5)I(t \le \tau))] +$
	[($0.4x_{1t-1} +$	$0.3x_{2t-1} +$	$u_{1t}^{3})$	$(I(x_{2t-1} \le 2.5)I(t > \tau)) +$
	($0.4x_{1t-1} +$		$u_{1t}^4)$	$(I(x_{2t-1} \le 2.5)I(t > \tau))]\}.$
$x_{2t} =$	$\{(0.4+$		$0.8x_{2t-1} +$	u_{2t}^{1})	$I(t \leq \tau) +$
	(0.6+		$0.8x_{2t-1} +$	$u_{2t}^2)$	$(1 - I(t \le \tau))\}$
			DGP: SB	TVAR	t
$x_{1t} =$	{[($0.4x_{1t-1}+$	$0.8x_{2t-1} +$	u_{1t}^1)	$(I(x_{2t-1} \leq 2)I(t \leq \tau)) +$
	($0.4x_{1t-1} +$		$u_{1t}^2)$	$(1 - I(x_{2t-1} \le 2)I(t \le \tau))] +$
	[($0.4x_{1t-1} +$	$0.3x_{2t-1} +$	$u_{1t}^{3})$	$(I(x_{2t-1} \leq 3)I(t > \tau)) +$
	($0.4x_{1t-1} +$		$u_{1t}^4)$	$(I(x_{2t-1} \le 3)I(t > \tau))]\}.$
$x_{2t} =$	$\{(0.4+$		$0.8x_{2t-1} +$	u_{2t}^1)	$I(t \le \tau) +$
	(0.6+		$0.8x_{2t-1} +$	$u_{2t}^2)$	$(1 - I(t \le \tau))\}$
Break:	$\tau = 100$ ·	when $n = 200$	and $\tau = 200$	when r	n = 400.
Hom.:	$\operatorname{var}(\mathbf{u}_t^i) =$	$\begin{bmatrix} 1 & cor \\ cor & 1 \end{bmatrix}$	for all i; cor =	= 0, -0,3	6,-0,6,
	. Г	$\begin{bmatrix} 3 & cov \end{bmatrix}$			
Het.: v	$\operatorname{var}(\mathbf{u}_t^i) = \left\lfloor \begin{array}{c} \mathbf{u}_t^i \end{array} \right]$	$\begin{bmatrix} cov & 1 \end{bmatrix}$	for i=1 for TV	AR e S	BVAR
and for	i=1,2 for $i=1,2$	SBTVARc and	SBTVAR; sam	ne cor. a	as hom.

Table	2
-------	---

.

Performance of estimation procedures for TVAR, SBVAR, SBTVARc and SBTVAR

					T = 200						T = 400		
			hom			het			hom			het	
		σ12=0	σ12=-0.3	512=-0.6	σ12=0	σ12=-0.3	σ12 =- 0.6	σ12=0	σ12=-0.3	σ12=-0.6	σ12=0	σ12=-0.3	σ12=-0.6
							DGP: TV	'AR					
			1	r = 2.5						r = 2.5			
CLS	mean	2.495	2.486	2.494	2.449	2.453	2.434	2.499	2.499	2.498	2.485	2.484	2.488
ŕ	std.err.	0.056	0.049	0.045	0.143	0.157	0.245	0.023	0.024	0.026	0.041	0.047	0.056
	bias	-0.005	-0 014	-0.006	-0.051	-0 047	-0.066	-0.001	-0.001	-0.002	-0 015	-0 016	-0.012
	hias/std err	-0.089	-0.286	-0 133	-0.357	-0 299	-0.269	-0.043	-0.042	-0.077	-0.366	-0 340	_0 214
М	mean	2 /0/	2 / 80	2 /05	2 / 37	2 4 5 9	2 47	2.5	2/08	2.5	2 / 8/	2 486	2 /0/
â	atd orr	0.040	0.045	0.032	0.172	0 115	0 115	0.02	0.025	0.021	0.041	0.043	0.033
r	Slu.en.	0.049	0.045	0.032	0.172	0.115	0.115	0.02	0.025	0.021	0.041	0.043	0.033
	Dias	-0.006	-0.011	-0.005	-0.063	-0.041	-0.03	0	-0.002	0	-0.016	-0.014	-0.006
	blas/sto.err.	-0.122	-0.244	-0.156	-0.366	-0.357	-0.261	0.000	-0.080	0.000	-0.390	-0.326	-0.182
	mean	2.492	2.486	2.494	2.483	2.481	2.491	2.498	2.498	2.501	2.497	2.496	2.502
r	std.err.	0.049	0.057	0.032	0.061	0.064	0.046	0.023	0.025	0.021	0.032	0.031	0.029
	bias	-0.008	-0.014	-0.006	-0.017	-0.019	-0.009	-0.002	-0.002	0.001	-0.003	-0.004	0.002
	bias/std.err.	-0.163	-0.246	-0.188	-0.279	-0.297	-0.196	-0.087	-0.080	0.048	-0.094	-0.129	0.069
							DGP: SE	BVAR					
			t = 100						t = 200				
CLS	mean	99.532	99.672	99.798	97.985	98.447	99.133	199.11	199.448	200.036	197.59	198.594	199.504
τ	std.err.	3.993	3.592	4.096	5.328	4.892	4.999	2.207	2.2	3.014	5.138	3.499	3.458
	bias	-0.468	-0.328	-0.202	-2.015	-1.553	-0.867	-0.888	-0.552	0.036	-2.414	-1.406	-0.496
	bias/std.err.	-0.228	-0.259	-0.448	-0.363	-0.449	-0.594	-0.407	-0.354	-0.310	-0.497	-0.458	-0.517
ML	mean	99.532	99.161	98.951	98.272	97.908	97.852	199.13	199.21	199.308	197.8	198.132	198.65
τ	std.err.	4.018	3.351	2.363	5.344	5.524	3.889	2.233	2.062	1.748	5.54	3.621	2.691
	bias	-0.468	-0.839	-1.049	-1.728	-2.092	-2.148	-0.874	-0.79	-0.692	-2.204	-1.868	-1.35
	bias/std.err.	-0.228	-0.259	-0.448	-0.363	-0.449	-0.594	-0.407	-0.354	-0.310	-0.497	-0.458	-0.517
HML	mean	99.217	99.161	98.86	98.902	98.58	98.587	199.1	199.238	199.364	198.86	198.888	198.958
τ	std.err.	3.438	3.244	2.546	3.028	3.16	2.377	2.217	2.152	2.05	2.293	2.428	2.014
	bias	-0.783	-0.839	-1.14	-1.098	-1.42	-1.413	-0.902	-0.762	-0.636	-1.14	-1.112	-1.042
	bias/std.err.	-0.228	-0.259	-0.448	-0.363	-0.449	-0.594	-0.407	-0.354	-0.310	-0.497	-0.458	-0.517
							DGP: SE	BTVARc					
CLS		0.407	r = 2.5; t = 10	00	0.075	0.000	0.05	0.400	r = 2.5; t = 1	200	0.450	0.475	0.400
	mean	2.467	2.433	2.471	2.375	2.388	2.35	2.492	2.489	2.487	2.453	2.475	2.469
'	sta.err.	0.171	0.233	0.196	0.468	0.438	0.481	0.039	0.106	0.063	0.221	0.149	0.186
	bias	-0.033	-0.067	-0.029	-0.125	-0.112	-0.15	-0.008	-0.011	-0.013	-0.047	-0.025	-0.031
ĉ	blas/std.err.	-0.193	-0.288	-0.148	-0.267	-0.256	-0.312	-0.205	-0.104	-0.206	-0.213	-0.168	-0.167
¹	mean	102.52	102.433	99.361	88.409	86.935	86.95	202.74	200.038	196.327	186.17	182.828	181.847
	std.err.	17.509	17.789	18.059	18.452	18.18	18.079	25.475	23.368	25.629	30.207	29.652	31.824
	bias	2.517	2.433	-0.639	-11.591	-13.065	-13.05	2.738	0.038	-3.673	-13.83	-17.172	-18.153
	bias/std.err.	0.144	0.137	-0.035	-0.628	-0.719	-0.722	0.107	0.002	-0.143	-0.458	-0.579	-0.570
ML	mean	2.468	2.446	2.488	2.359	2.363	2.398	2.492	2.496	2.497	2.445	2.464	2.481
r	std.err.	0.177	0.192	0.077	0.491	0.445	0.383	0.039	0.038	0.032	0.276	0.179	0.123
	bias	-0.032	-0.054	-0.012	-0.141	-0.137	-0.102	-0.008	-0.004	-0.003	-0.055	-0.036	-0.019
<u> </u>	bias/std.err.	-0.181	-0.281	-0.156	-0.287	-0.308	-0.266	-0.205	-0.105	-0.094	-0.199	-0.201	-0.154
τ	mean	102.29	101.018	100.259	89.293	88.017	89.183	202.83	199.684	200.825	185.04	184.482	185.254
	std.err.	17.319	18.209	16.488	19.31	19.764	17.916	25.511	23.574	20.429	30.462	31.193	30.078
	bias	2.289	1.018	0.259	-10.707	-11.983	-10.817	2.827	-0.316	0.825	-14.965	-15.518	-14.746
	bias/std.err.	0.132	0.056	0.016	-0.554	-0.606	-0.604	0.111	-0.013	0.040	-0.491	-0.497	-0.490
HML	mean	2.44	2.41	2.454	2.303	2.376	2.344	2.485	2.493	2.499	2.394	2.448	2.48
r	std.err.	0.346	0.362	0.191	0.633	0.564	0.499	0.084	0.057	0.034	0.374	0.213	0.126
	bias	-0.06	-0.09	-0.046	-0.197	-0.124	-0.156	-0.015	-0.007	-0.001	-0.106	-0.052	-0.02
	bias/std.err.	-0.173	-0.249	-0.241	-0.311	-0.220	-0.313	-0.179	-0.123	-0.029	-0.283	-0.244	-0.159
$\hat{ au}$	mean	101.98	102.264	100.666	98.661	97.475	97.768	202.08	198.115	199.615	198.15	198.349	198.245
	std.err.	19.293	19.861	19.309	12.884	12.145	11.221	25.756	24.843	22.59	9.696	10.065	7.155
	bias	1.981	2.264	0.666	-1.339	-2.525	-2.232	2.075	-1.885	-0.385	-1.855	-1.651	-1.755
	bias/std.err.	0.103	0.114	0.034	-0.104	-0.208	-0.199	0.081	-0.076	-0.017	-0.191	-0.164	-0.245

							DGP: SE	BTVAR					
		1	r1 = 2; r2 =	3; t=100					r1 = 2; r2 =	3; t=200			
CLS	mean	1.9	1.931	1.92	1.933	1.853	1.969	1.965	1.948	1.965	1.903	1.879	1.914
\hat{r}_1	std.err.	0.431	0.493	0.519	0.647	0.635	0.708	0.117	0.216	0.206	0.33	0.403	0.458
1	bias	-0.1	-0.069	-0.08	-0.067	-0.147	-0.031	-0.035	-0.052	-0.035	-0.097	-0.121	-0.086
	bias/std.err.	-0.232	-0.140	-0.154	-0.104	-0.231	-0.044	-0.299	-0.241	-0.170	-0.294	-0.300	-0.188
\hat{r}_2	mean	2.793	2.66	2.702	2.92	2.878	2.941	2.804	2.699	2.64	2.903	2.803	2.815
	std.err.	0.93	0.86	0.863	0.977	0.981	0.939	0.673	0.706	0.729	0.734	0.64	0.655
	bias	-0.207	-0.34	-0.298	-0.08	-0.122	-0.059	-0.196	-0.301	-0.36	-0.097	-0.197	-0.185
	bias/std.err.	-0.223	-0.395	-0.345	-0.082	-0.124	-0.063	-0.291	-0.426	-0.494	-0.132	-0.308	-0.282
$\hat{ au}$	mean	105.6	103.147	103.787	136.07	135.993	135.829	205.33	200.835	205.039	275.95	275.668	275.239
	std.err.	29.875	30.252	30.391	2.479	3.214	2.872	57.397	59.052	57.256	2.619	3.657	3.968
	bias	5.604	3.147	3.787	36.072	35.993	35.829	5.328	0.835	5.039	75.947	75.668	75.239
	bias/std.err.	0.188	0.104	0.125	14.551	11.199	12.475	0.093	0.014	0.088	28.998	20.691	18.961
ML	mean	1.924	1.886	1.951	1.9	1.824	1.885	1.949	1.966	1.99	1.864	1.837	1.915
\hat{r}_1	std.err.	0.473	0.522	0.325	0.669	0.71	0.665	0.185	0.109	0.202	0.402	0.426	0.37
	bias	-0.076	-0.114	-0.049	-0.1	-0.176	-0.115	-0.051	-0.034	-0.01	-0.136	-0.163	-0.085
	bias/std.err.	-0.161	-0.218	-0.151	-0.149	-0.248	-0.173	-0.276	-0.312	-0.050	-0.338	-0.383	-0.230
\hat{r}_2	mean	2.764	2.676	2.693	2.902	2.899	2.833	2.755	2.749	2.751	2.906	2.852	2.905
	std.err.	0.915	0.862	0.819	0.987	0.955	0.835	0.681	0.624	0.577	0.709	0.571	0.547
	bias	-0.236	-0.324	-0.307	-0.098	-0.101	-0.167	-0.245	-0.251	-0.249	-0.094	-0.148	-0.095
	bias/std.err.	-0.258	-0.376	-0.375	-0.099	-0.106	-0.200	-0.360	-0.402	-0.432	-0.133	-0.259	-0.174
$\hat{ au}$	mean	105.33	105.395	103.47	133.51	133.601	132.251	201.84	204.835	204.9	270.93	270.472	269.237
	std.err.	31.127	30.88	29.972	7.508	7.711	8.312	60.108	59.3	49.53	9.674	10.689	12.981
	bias	5.326	5.395	3.47	33.512	33.601	32.251	1.841	4.835	4.9	70.93	70.472	69.237
	bias/std.err.	0.171	0.175	0.116	4.464	4.358	3.880	0.031	0.082	0.099	7.332	6.593	5.334
HML	mean	1.844	1.895	1.93	1.738	1.775	1.833	1.963	1.961	1.984	1.845	1.726	1.842
\hat{r}_1	std.err.	0.597	0.546	0.522	1.053	0.89	0.82	0.117	0.131	0.04	0.464	0.534	0.453
	bias	-0.156	-0.105	-0.07	-0.262	-0.225	-0.167	-0.037	-0.039	-0.016	-0.155	-0.274	-0.158
	bias/std.err.	-0.261	-0.192	-0.134	-0.249	-0.253	-0.204	-0.316	-0.298	-0.400	-0.334	-0.513	-0.349
\hat{r}_2	mean	2.862	2.689	2.695	2.781	2.675	2.699	2.859	2.828	2.864	2.858	2.822	2.869
	std.err.	1.08	0.984	0.881	1.013	0.996	0.842	0.671	0.574	0.478	0.648	0.517	0.489
	bias	-0.138	-0.311	-0.305	-0.219	-0.325	-0.301	-0.141	-0.172	-0.136	-0.142	-0.178	-0.131
	bias/std.err.	-0.128	-0.316	-0.346	-0.216	-0.326	-0.357	-0.210	-0.300	-0.285	-0.219	-0.344	-0.268
$\hat{ au}$	mean	102.6	104.308	103.733	98.413	97.535	99.232	201.68	199.744	203.271	198.45	196.73	199.121
	std.err.	21.132	19.841	18.729	14.08	13.459	11.497	30.027	25.854	21.22	12.604	11.241	6.836
	bias	2.596	4.308	3.733	-1.587	-2.465	-0.768	1.677	-0.256	3.271	-1.546	-3.27	-0.879
	bias/std.err.	0.123	0.217	0.199	-0.113	-0.183	-0.067	0.056	-0.010	0.154	-0.123	-0.291	-0.129

Note: these results are based on 500 replications.

			iabie (, 2010001	on Hoquon	tores asing	Binana	and DE				
		VAR	TVAR	SBVAR	SBTVARc	SBTVAR	VAR	TVAR	SBVAR	$\operatorname{SBTVARc}$	SBTVAR	
n				DGP: '	VAR							
200	W	0.938	0.023	0.024	0.002	0.013						
	LM	0.957	0.015	0.018	_	0.010						
400	W	0.982	0.003	0.010	—	0.003						
	LM	0.991	0.004	0.005	—	—						
			DGP: 7	ΓVAR, no •	variance chan	ge	I	DGP: TVA	AR, regime	changing var	iance	
200	W	_	0.672	—	0.105	0.223	_	0.623	_	0.110	0.254	
	LM	—	0.744	—	0.076	0.180	_	0.698	_	0.085	0.216	
400	W	_	0.769	_	0.072	0.159	_	0.708	_	0.064	0.228	
	LM	—	0.795	—	0.065	0.140	_	0.770	_	0.048	0.182	
			DGP: S	BVAR, no	variance char	ıge	DGP: SBVAR, regime changing variance					
200	W	_	_	0.755	0.077	0.168	_	—	0.700	0.106	0.194	
	LM	—	_	0.800	0.058	0.142	_	_	0.746	0.085	0.169	
400	W	_	—	0.851	0.034	0.115	—	—	0.824	0.036	0.140	
	LM	—	—	0.880	0.026	0.094	_	_	0.830	0.033	0.137	
			DGP: SB	TVARc, no	o variance cha	ange	DGP: SBTVARc, regime changing variance					
200	W	0.013	0.130	_	0.309	0.548	0.046	0.223	0.008	0.241	0.482	
	LM	0.016	0.166	0.002	0.290	0.526	0.056	0.259	0.010	0.224	0.451	
400	W	—	0.025	_	0.339	0.636	_	0.102	—	0.266	0.632	
	LM	_	0.029	-	0.338	0.633	_	0.101	_	0.261	0.638	
			DGP: SI	BTVAR, no	variance cha	nge	D	GP: SBTV	VAR, regin	ne changing va	ariance	
200	W	0.135	0.118	0.002	0.130	0.615	0.242	0.173	0.011	0.117	0.457	
	LM	0.161	0.140	_	0.111	0.588	0.268	0.206	0.012	0.102	0.412	
400	W	0.012	0.021	_	0.064	0.903	0.062	0.080	-	0.096	0.762	
	LM	0.013	0.024	_	0.064	0.899	0.052	0.085	_	0.082	0.781	

 Table 3
 Selection Frequencies using BWald and BLM.

Note: Selection rates based on 1000 replications with DGPs described in Table 1.

				· ·	• /
	VAR	TVAR	SBVAR	SBTVARc	SBTVAR
d	-	4	-	4	4, 4
ŵ		0.463		0.488	0.31 1.51
1	-	[0.20, 0.62]	-	[0.47, 1.23]	[0.16, 0.54] ' $[1.29, 1.79]$
^			1985:2	1971:2	1981:1
1	-	-	[1983:2,1986:2]	[1969:3,1972:4]	[1980:1,1982:1]
				1.007	0.924
$\hat{\sigma}^2$	0.718	0.972	0.929	0.653	0.811
O_Y	0.710	0.536	0.230	0.573	0.353
				0.466	0.157
				0.130	0.408
$\hat{\sigma}^2$	0.974	0.496	0.326	0.023	0.079
o_S	0.274	0.139	0.118	0.663	0.211
				0.178	0.172
				22	27
T	105	47	124	46	80
1	195	148	71	26	39
				101	49
SIC	-1.265	-1.412	-1.324	-1.165	-1.211

Table 4 Estimated Parameters (1953:Q2 - 2002:Q4).

Note: The numbers in [] are the 90% confidence interval computed by bootstrap. $\hat{\sigma}_Y^2$ and $\hat{\sigma}_S^2$ are respectively the estimated variance of output and spread equations for each regime with T observations.

	(1	<u> </u>	• /
	H0 X HA	BWald	BLM
1A	VAR X TVAR	1.602	1.497
$1\mathrm{B}$	VAR X SBVAR	1.134	1.095
2A1	TVAR X SBTVARc	1.476	1.393
2A2	TVAR X SBTVAR	1.695	1.572
2B1	SBVAR X SBTVARC	1.876	1.713
2B2	SBVAR X SBTVAR	2.064	1.852
X1	TVAR X 3R-TVAR	0.807	0.792
X2	SBVAR X 2-SBVAR	1.261	1.190

Table 5 LM bounds (sample: 1953:Q2 - 2002:Q4).

Note: Selection rule: if Bwald (BLM) > 1,

then choose model under alternative.

Table 6Measures of Forecasting Performance of the Probability of Recession.

			VAR	TVAR	SBVAR	SBTVARc	SBTVAR
		Sample			Event	А	
QPS	In	1954:2 -2003:3	0.093	0.074	0.097	0.072	0.066
		1986:1 -2003:3	0.086	0.080	0.112	0.070	0.063
	RT	1986:1 -2003:4	0.092	0.087	0.120	0.100	0.104
L(c)	In	1954:2 -2003:3	-0.097	-0.387	-0.226	-0.258	-0.452
		1986:1 -2003:3	0	-0.10	0	-0.20	-0.40
	RT	1986:1 - 2003:4	0	-0.30	0.10	0	0
					Event	В	
QPS	In	1954:2 -2003:3	0.059	0.046	0.058	0.057	0.048
		1986:1 -2003:3	0.045	0.044	0.048	0.036	0.037
	RT	1986:1 -2003:4	0.066	0.075	0.081	0.077	0.072
L(c)	In	1954:2 -2003:3	-0.059	-0.118	0.059	-0.059	-0.177
		1986:1 -2003:3	0	-0.167	0	-0.333	-0.333
	RT	1986:1 - 2003:4	-0.167	0	0.167	0	0

Note: QPS is computed as in eq. 3 and L(c) is defined in eq. 1. In: in-sample; RT: realtime. Event A and B are defined in section 3.1.

	VAR		TVAR		SBVAR		SBTVARc		SBTVAR	
	\hat{P}_t	\hat{c}_t	\hat{P}_t	\hat{c}_t	\hat{P}_t	\hat{c}_t	\hat{P}_t	\hat{c}_t	\hat{P}_t	\hat{c}_t
				Eve	ent A					
2000:Q1	0.10	0.18	0.03	0.16	0.12	0.23	0.13	0.29	0.02	0.29
2000:Q2	0.15	0.23	0.04	0.16	0.02	0.16	0.02	0.18	0.06	0.31
2000:Q3	0.19	0.25	0.06	0.16	0.02	0.18	0.04	0.16	0.11	0.47
2000:Q4	0.31	0.25	0.25	0.16	0.02	0.16	0.30	0.20	0.66	0.51
2001:Q1	0.35	0.25	0.44	0.16	0.05	0.16	0.46	0.20	0.37	0.18
2001:Q2	0.26	0.23	0.37	0.16	0.03	0.16	0.42	0.16	0.46	0.18
2001:Q3	0.12	0.23	0.16	0.18	0.02	0.16	0.19	0.16	0.00	0.27
2001:Q4	0.08	0.23	0.09	0.20	0.03	0.18	0.10	0.16	0.05	0.18
2002:Q1	0.05	0.25	0.02	0.20	0.06	0.29	0.02	0.40	0.01	0.27
2002:Q2	0.04	0.25	0.02	0.20	0.00	0.16	0.01	0.25	0.01	0.20
2002:Q3	0.04	0.25	0.02	0.16	0.01	0.16	0.02	0.29	0.01	0.20
2002:Q4	0.05	0.25	0.04	0.18	0.03	0.16	0.03	0.25	0.02	0.42
Hits	3	;	3		0		2		3	
FA	C)	0		0		1		0	
			0.26		0.40		0.25			
QPS	0.2	24	0.5	26	0.	40	0.2	25	0.2	21
QPS	0.2	24	0.5	26 Eve	0.4 ent B	40	0.2	25	0.2	21
QPS 2000:Q1	0.2	0.13	0.5	26 Eve 0.10	0.4 ent B 0.02	40	0.2	25 0.13	0.2	0.18
QPS 2000:Q1 2000:Q2	0.2 0.01 0.02	0.13 0.10	0.1 0.01 0.01	$\frac{26}{0.10}$ 0.10 0.10	0.4 ent B 0.02 0.00	40 0.13 0.10	0.2 0.01 0.00	25 0.13 0.10	0.2 0.00 0.00	21 0.18 0.33
QPS 2000:Q1 2000:Q2 2000:Q3	0.2 0.01 0.02 0.03	24 0.13 0.10 0.30	0.1 0.01 0.02		$\begin{array}{c} 0.4 \\ \text{ent B} \\ 0.02 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	40 0.13 0.10 0.10	0.2 0.01 0.00 0.00	25 0.13 0.10 0.10	0.2 0.00 0.00 0.00	21 0.18 0.33 0.35
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4	0.2 0.01 0.02 0.03 0.09	0.13 0.10 0.30 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \end{array}$	26 Eve 0.10 0.10 0.13 0.10	0. ent B 0.02 0.00 0.00 0.00	40 0.13 0.10 0.10 0.10 0.10	$\begin{array}{c} 0.2 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \end{array}$	25 0.13 0.10 0.10 0.10	0.2 0.00 0.00 0.00 0.03	0.18 0.33 0.35 0.33
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1	0.2 0.01 0.02 0.03 0.09 0.17	0.13 0.10 0.30 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$		$\begin{array}{c} 0.\\ \text{ent B}\\ \hline 0.02\\ 0.00\\ 0.00\\ 0.00\\ 0.02 \end{array}$	40 0.13 0.10 0.10 0.10 0.10 0.10	$\begin{array}{c} 0.2 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.03 \end{array}$	0.13 0.10 0.10 0.10 0.10 0.10	0.2 0.00 0.00 0.00 0.03 0.08	0.18 0.33 0.35 0.33 0.10
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2	0.2 0.01 0.02 0.03 0.09 0.17 0.13	0.13 0.10 0.30 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \end{array}$	26 Eve 0.10 0.10 0.13 0.10 0.10 0.10 0.10	$\begin{array}{c} 0.\\ \text{ent B} \\ \hline 0.02 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$	40 0.13 0.10 0.10 0.10 0.10 0.10 0.10	$\begin{array}{c} 0.2 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.04 \end{array}$	0.13 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.00 0.00 0.03 0.08 0.25	0.18 0.33 0.35 0.33 0.10 0.15
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05	0.13 0.10 0.30 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \end{array}$		$\begin{array}{c} 0.\\ \text{ent B} \\ \hline 0.02 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.02 \\ 0.02 \\ 0.01 \end{array}$	$ \begin{array}{r} 40 \\ \hline 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ \end{array} $	0.2 0.01 0.00 0.00 0.01 0.03 0.04 0.11	$\begin{array}{c} 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$	0.2 0.00 0.00 0.03 0.08 0.25 0.00	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q3 2001:Q4	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13	0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \end{array}$	26 Eve 0.10 0.10 0.13 0.10 0.10 0.10 0.10 0.10 0.15	$\begin{array}{c} 0.\\ ent B\\ 0.02\\ 0.00\\ 0.00\\ 0.00\\ 0.02\\ 0.02\\ 0.01\\ 0.08\\ \end{array}$	40 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.1	0.2 0.01 0.00 0.01 0.03 0.04 0.11 0.24	0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.10 \\ \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q4 2001:Q4 2002:Q1	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13 0.03	0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \\ 0.01 \end{array}$	$\begin{array}{r} 26\\ \hline Eve \\ 0.10\\ 0.10\\ 0.13\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.15\\ 0.18\\ \end{array}$	0.ent B 0.02 0.00 0.00 0.02 0.02 0.02 0.01 0.08 0.05	40 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.01 0.00 0.00 0.01 0.03 0.04 0.11 0.24 0.02	0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33 0.01	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q3 2001:Q4 2002:Q1 2002:Q1	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13 0.03 0.01	0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \\ 0.01 \\ 0.00 \end{array}$	$\begin{array}{r} 26\\ \hline Eve \\ 0.10\\ 0.10\\ 0.13\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.15\\ 0.18\\ 0.15 \end{array}$	$\begin{array}{c} 0.\\ \text{ent B}\\ \hline 0.02\\ 0.00\\ 0.00\\ 0.00\\ 0.02\\ 0.02\\ 0.01\\ 0.08\\ 0.05\\ 0.00\\ \end{array}$	40 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.01 0.00 0.00 0.01 0.03 0.04 0.11 0.24 0.02 0.00	$\begin{array}{c} 0.13\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ \end{array}$	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33 0.01 0.00	$\begin{array}{c} 0.18\\ 0.33\\ 0.35\\ 0.33\\ 0.10\\ 0.15\\ 0.15\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q4 2001:Q4 2002:Q1 2002:Q2 2002:Q3	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13 0.03 0.01 0.01	0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \\ 0.01 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{r} 26\\ \hline Eve \\ 0.10\\ 0.10\\ 0.13\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.15\\ 0.18\\ 0.15\\ 0.10\\ \end{array}$	0.2 ent B 0.02 0.00 0.00 0.00 0.02 0.02 0.02 0.0	40 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.1	0.2 0.01 0.00 0.01 0.03 0.04 0.11 0.24 0.02 0.00 0.01	$\begin{array}{c} 0.13\\ 0.10\\$	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33 0.01 0.00 0.00	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q4 2002:Q1 2002:Q1 2002:Q3 2002:Q4	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13 0.03 0.01 0.01 0.01	24 0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.10	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \end{array}$	$\begin{array}{r} 26\\ \hline Eve \\ 0.10\\ 0.10\\ 0.13\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.15\\ 0.18\\ 0.15\\ 0.10\\ 0.13\\ \end{array}$	$\begin{array}{c} 0.\\ \text{ent B}\\ \hline 0.02\\ 0.00\\ 0.00\\ 0.00\\ 0.02\\ 0.02\\ 0.01\\ 0.08\\ 0.05\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	40 0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.01 0.00 0.00 0.01 0.03 0.04 0.11 0.24 0.02 0.00 0.01 0.01	$\begin{array}{c} 0.13\\ 0.10\\$	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33 0.01 0.00 0.00 0.00	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.28 \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q3 2001:Q4 2002:Q1 2002:Q1 2002:Q2 2002:Q3 2002:Q4 Hits	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13 0.03 0.01 0.01 0.01	0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \end{array}$	26 Eve 0.10 0.10 0.13 0.10 0.10 0.10 0.10 0.10 0.15 0.18 0.15 0.10 0.13 0.13 0.10	0.ent B 0.02 0.00 0.00 0.00 0.02 0.02 0.01 0.08 0.05 0.00 0.00 0.00 0.00	40 0.13 0.10 0.	0.2 0.01 0.00 0.00 0.01 0.03 0.04 0.11 0.24 0.02 0.00 0.01 0.01 1	0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33 0.01 0.00 0.00 0.00 1	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.28 \end{array}$
QPS 2000:Q1 2000:Q2 2000:Q3 2000:Q4 2001:Q1 2001:Q2 2001:Q3 2001:Q3 2001:Q4 2002:Q1 2002:Q2 2002:Q3 2002:Q4 Hits FA	0.2 0.01 0.02 0.03 0.09 0.17 0.13 0.05 0.13 0.03 0.01 0.01 0.01 0.01 2 1	0.13 0.10 0.30 0.13 0.13 0.13 0.13 0.13	$\begin{array}{c} 0.1 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.08 \\ 0.15 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \end{array}$	26 Eve 0.10 0.13 0.10 0.13 0.10 0.10 0.10 0.10 0.10 0.15 0.18 0.15 0.10 0.13 0.13 0.10 0.13 0.10 0.13 0.10 0.10 0.13 0.10 0.13 0.10 0.10 0.13 0.10 0.13 0.1	$\begin{array}{c} 0.\\ \text{ent B} \\ \hline 0.02 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.08 \\ 0.05 \\ 0.00 \\ 0.00 \\ 0.00 \\ \hline 0$	40 0.13 0.10 0.	$\begin{array}{c} 0.2 \\ \hline 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.03 \\ 0.04 \\ 0.11 \\ 0.24 \\ 0.02 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline \end{array}$	0.13 0.10 0.10 0.10 0.10 0.10 0.10 0.10	0.2 0.00 0.00 0.03 0.08 0.25 0.00 0.33 0.01 0.00 0.00 0.00 1 1	$\begin{array}{c} 21 \\ \hline 0.18 \\ 0.33 \\ 0.35 \\ 0.33 \\ 0.10 \\ 0.15 \\ 0.15 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.28 \end{array}$

 Table 7
 Predictions of Recession with Real-Time Data for 2000 - 2002.

Note: Bolded dates indicate the quarter in which the events occurred. Bolded probabilities indicate that a recession is signalized because $\hat{\mathbf{P}}_t > \hat{c}_t$.

•

Figure 1 $E(x_{1t}|x_{2t-1})$ estimated by local linear regression with data simulated from the DGPs described in Table 1 (panels: 1- VAR; 2 - TVAR; 3 - SBVAR; 4 - SBTVARc; 5 -SBTVAR).

Figure 2 Recursive estimates with real-time data for delays, break-points and thresholds for SBVAR, TVAR, SBTVARc and SBTVAR.

109A.A

1994.

1992., ca3.

rTVAR

10900^{.7}

109^{1,1}

-rSBTVARc -----r1SBTVAR -----r2SBTVAR

1,096^{5,7}

1991^{.4},08.3

1000^{2,1}

2000: 000.4

2001:3002.2

2003.

0

1980^{, A}

1987.2

1,090^{67.}

~98°.

1000°,

1092, 1091, 201, th

,0900^{,A}

Figure 3 In-sample predictions of the probability of recession (event A, dotted line).

Figure 4 In-sample predictions of the probability of recession (event B, dotted line).