227 research outputs found

    Illusion and Dazzle: Adversarial Optical Channel Exploits against Lidars for Automotive Applications

    Get PDF
    With the advancement in computing, sensing, and vehicle electronics, autonomous vehicles are being realized. For autonomous driving, environment perception sensors such as radars, lidars, and vision sensors play core roles as the eyes of a vehicle; therefore, their reliability cannot be compromised. In this work, we present a spoofing by relaying attack, which can not only induce illusions in the lidar output but can also cause the illusions to appear closer than the location of a spoofing device. In a recent work, the former attack is shown to be effective, but the latter one was never shown. Additionally, we present a novel saturation attack against lidars, which can completely incapacitate a lidar from sensing a certain direction. The effectiveness of both the approaches is experimentally verified against Velodyne\u27s VLP-16

    Murine B Cell Development and Antibody Responses to Model Antigens Are Not Impaired in the Absence of the TNF Receptor GITR

    Get PDF
    The Glucocorticoid-Induced Tumor necrosis factor Receptor GITR, a member of the tumor necrosis factor receptor superfamily, has been shown to be important in modulating immune responses in the context of T cell immunity. B lymphocytes also express GITR, but a role of GITR in humoral immunity has not been fully explored. To address this question, we performed studies to determine the kinetics of GITR expression on naΓ―ve and stimulated B cells and the capacity of B cells to develop and mount antibody responses in GITRβˆ’/βˆ’ mice. Results of our studies indicate that all mature B cells express GITR on the cell surface, albeit at different levels. Expression of GITR on naΓ―ve mature B cells is upregulated by BCR signaling, but is counteracted by helper T cell-related factors and other inflammatory signals in vitro. In line with these findings, expression of GITR on germinal center and memory B cells is lower than that on naΓ―ve B cells. However, the expression of GITR is strongly upregulated in plasma cells. Despite these differences in GITR expression, the absence of GITR has no effect on T cell-dependent and T cell-independent antibody responses to model antigens in GITRβˆ’/βˆ’ mice, or on B cell activation and proliferation in vitro. GITR deficiency manifests only with a slight reduction of mature B cell numbers and increased turnover of naΓ―ve B cells, suggesting that GITR slightly contributes to mature B cell homeostasis. Overall, our data indicate that GITR does not play a significant role in B cell development and antibody responses to T-dependent and independent model antigens within the context of a GITR-deficient genetic background

    Current considerations for clinical management and care of non-alcoholic fatty liver disease: Insights from the 1st International Workshop of the Canadian NASH Network (CanNASH).

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) affects approximately 8 million Canadians. NAFLD refers to a disease spectrum ranging from bland steatosis to non-alcoholic steatohepatitis (NASH). Nearly 25% of patients with NAFLD develop NASH, which can progress to liver cirrhosis and related end-stage complications. Type 2 diabetes and obesity represent the main risk factors for the disease. The Canadian NASH Network is a national collaborative organization of health care professionals and researchers with a primary interest in enhancing understanding, care, education, and research around NAFLD, with a vision of best practices for this disease state. At the 1st International Workshop of the CanNASH network in April 2021, a joint event with the single topic conference of the Canadian Association for the Study of the Liver (CASL), clinicians, epidemiologists, basic scientists, and community members came together to share their work under the theme of NASH. This symposium also marked the initiation of collaborations between Canadian and other key opinion leaders in the field representative of international liver associations. The main objective is to develop a policy framework that outlines specific targets, suggested activities, and evidence-based best practices to guide provincial, territorial, and federal organizations in developing multidisciplinary models of care and strategies to address this epidemic

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and Ξ³-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses

    Distinct Populations of Hepatic Stellate Cells in the Mouse Liver Have Different Capacities for Retinoid and Lipid Storage

    Get PDF
    Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be β€œprimed” and ready for rapid response to acute liver injury

    Impaired Hepatitis C Virus-Specific T Cell Responses and Recurrent Hepatitis C Virus in HIV Coinfection

    Get PDF
    BACKGROUND: Hepatitis C virus (HCV)-specific T cell responses are critical for spontaneous resolution of HCV viremia. Here we examined the effect of a lymphotropic virus, HIV-1, on the ability of coinfected patients to maintain spontaneous control of HCV infection. METHODS AND FINDINGS: We measured T cell responsiveness by lymphoproliferation and interferon-Ξ³ ELISPOT in a large cohort of HCV-infected individuals with and without HIV infection. Among 47 HCV/HIV-1-coinfected individuals, spontaneous control of HCV was associated with more frequent HCV-specific lymphoproliferative (LP) responses (35%) compared to coinfected persons who exhibited chronic HCV viremia (7%, p = 0.016), but less frequent compared to HCV controllers who were not HIV infected (86%, p = 0.003). Preservation of HCV-specific LP responses in coinfected individuals was associated with a higher nadir CD4 count (r (2) = 0.45, p < 0.001) and the presence and magnitude of the HCV-specific CD8(+) T cell interferon-Ξ³ response (p = 0.0014). During long-term follow-up, recurrence of HCV viremia occurred in six of 25 coinfected individuals with prior control of HCV, but in 0 of 16 HIV-1-negative HCV controllers (p = 0.03, log rank test). In these six individuals with recurrent HCV viremia, the magnitude of HCV viremia following recurrence inversely correlated with the CD4 count at time of breakthrough (r = βˆ’0.94, p = 0.017). CONCLUSIONS: These results indicate that HIV infection impairs the immune response to HCVβ€”including in persons who have cleared HCV infectionβ€”and that HIV-1-infected individuals with spontaneous control of HCV remain at significant risk for a second episode of HCV viremia. These findings highlight the need for repeat viral RNA testing of apparent controllers of HCV infection in the setting of HIV-1 coinfection and provide a possible explanation for the higher rate of HCV persistence observed in this population

    Concurrent Detection of Circulating Minor Histocompatibility Antigen-Specific CD8+ T Cells in SCT Recipients by Combinatorial Encoding MHC Multimers

    Get PDF
    Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8+ T cells. Therefore, monitoring of multiple MiHA-specific CD8+ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8+ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8+ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8+ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8+ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8+ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients

    Dual Anti-OX40/IL-2 Therapy Augments Tumor Immunotherapy via IL-2R-Mediated Regulation of OX40 Expression

    Get PDF
    The provision of T cell co-stimulation via members of the TNFR super-family, including OX40 (CD134) and 4-1BB (CD137), provides critical signals that promote T cell survival and differentiation. Recent studies have demonstrated that ligation of OX40 can augment T cell-mediated anti-tumor immunity in pre-clinical models and more importantly, OX40 agonists are under clinical development for cancer immunotherapy. OX40 is of particular interest as a therapeutic target as it is not expressed on naΓ―ve T cells but rather, is transiently up-regulated following TCR stimulation. Although TCR engagement is necessary for inducing OX40 expression, the downstream signals that regulate OX40 itself remain unclear. In this study, we demonstrate that OX40 expression is regulated through a TCR and common gamma chain cytokine-dependent signaling cascade that requires JAK3-mediated activation of the downstream transcription factors STAT3 and STAT5. Furthermore, combined treatment with an agonist anti-OX40 mAb and IL-2 augmented tumor immunotherapy against multiple tumor types. Dual therapy was also able to restore the function of anergic tumor-reactive CD8 T cells in mice with long-term well-established (>5 wks) tumors, leading to increased survival of the tumor-bearing hosts. Together, these data reveal the ability of TCR/common gamma chain cytokine signaling to regulate OX40 expression and demonstrate a novel means of augmenting cancer immunotherapy by providing dual anti-OX40/common gamma chain cytokine-directed therapy

    Structural Basis for Broad Neutralization of Hepatitis C Virus Quasispecies

    Get PDF
    Monoclonal antibodies directed against hepatitis C virus (HCV) E2 protein can neutralize cell-cultured HCV and pseudoparticles expressing envelopes derived from multiple HCV subtypes. For example, based on antibody blocking experiments and alanine scanning mutagenesis, it was proposed that the AR3B monoclonal antibody recognized a discontinuous conformational epitope comprised of amino acid residues 396–424, 436–447, and 523–540 of HCV E2 envelope protein. Intriguingly, one of these segments (436–447) overlapped with hypervariable region 3 (HVR3), a domain that exhibited significant intrahost and interhost genetic diversity. To reconcile these observations, amino-acid sequence variability was examined and homology-based structural modelling of E2 based on tick-borne encephalitis virus (TBEV) E protein was performed based on 413 HCV sequences derived from 18 subjects with chronic hepatitis C. Here we report that despite a high degree of amino-acid sequence variability, the three-dimensional structure of E2 is remarkably conserved, suggesting broad recognition of structural determinants rather than specific residues. Regions 396–424 and 523–540 were largely exposed and in close spatial proximity at the surface of E2. In contrast, region 436–447, which overlaps with HVR3, was >35 Γ… away, and estimates of buried surface were inconsistent with HVR3 being part of the AR3B binding interface. High-throughput structural analysis of HCV quasispecies could facilitate the development of novel vaccines that target conserved structural features of HCV envelope and elicit neutralizing antibody responses that are less vulnerable to viral escape

    Mitochondrial and Plasma Membrane Pools of Stomatin-Like Protein 2 Coalesce at the Immunological Synapse during T Cell Activation

    Get PDF
    Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2 may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some mitochondrial proteins in the plasma membrane
    • …
    corecore