58 research outputs found

    A Draft Genome of \u3ci\u3eYersinia Pestis\u3c/i\u3e From Victims of the Black Death

    Get PDF
    Technological advances in DNA recovery and sequencing have drastically expanded the scope of genetic analyses of ancient specimens to the extent that full genomic investigations are now feasible and are quickly becoming standard1. This trend has important implications for infectious disease research because genomic data from ancient microbes may help to elucidate mechanisms of pathogen evolution and adaptation for emerging and re-emerging infections. Here we report a reconstructed ancient genome of Yersinia pestis at 30-fold average coverage from Black Death victims securely dated to episodes of pestilence-associated mortality in London, England, 1348–1350. Genetic architecture and phylogenetic analysis indicate that the ancient organism is ancestral to most extant strains and sits very close to the ancestral node of all Y. pestis commonly associated with human infection. Temporal estimates suggest that the Black Death of 1347–1351 was the main historical event responsible for the introduction and widespread dissemination of the ancestor to all currently circulating Y. pestis strains pathogenic to humans, and further indicates that contemporary Y. pestis epidemics have their origins in the medieval era. Comparisons against modern genomes reveal no unique derived positions in the medieval organism, indicating that the perceived increased virulence of the disease during the Black Death may not have been due to bacterial phenotype. These findings support the notion that factors other than microbial genetics, such as environment, vector dynamics and host susceptibility, should be at the forefront of epidemiological discussions regarding emerging Y. pestis infections

    Targeted deep amplicon sequencing of antimalarial resistance markers in Plasmodium falciparum isolates from Cameroon

    Get PDF
    BACKGROUND: Recent studies show the first emergence of the R561H artemisinin-associated resistance marker in Africa, which highlights the importance of continued molecular surveillance to assess the selection and spread of this and other drug resistance markers in the region.METHOD: In this study, we used targeted deep amplicon sequencing (TADS) of 116 isolates collected in two areas of Cameroon to genotype the major drug resistance genes k13, crt, mdr1, dhfr, dhps, and the cytochrome b (cytb) in P. falciparum.RESULTS: No confirmed or associated artemisinin resistance markers were observed in Pfk13. In comparison, both major and minor alleles associated with drug resistance were found in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps. Notably, a high frequency of other non-synonymous mutations was observed across all the genes, except Pfcytb, suggesting continued selection pressure.CONCLUSIONS: The results from this study support the continued use of artemisinin combination therapy (ACT) for treatment and administration of sulphadoxine-pyrimethamine for intermittent preventive therapy in pregnant women and for seasonal chemoprevention in these study sites in Cameroon
    corecore