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A draft genome of Yersinia pestis from victims of the
Black Death
Kirsten I. Bos1*, Verena J. Schuenemann2*, G. Brian Golding3, Hernán A. Burbano4, Nicholas Waglechner5, Brian K. Coombes5,
Joseph B. McPhee5, Sharon N. DeWitte6,7, Matthias Meyer4, Sarah Schmedes8, James Wood9, David J. D. Earn5,10, D. Ann Herring11,
Peter Bauer12, Hendrik N. Poinar1,3,5 & Johannes Krause2,12

Technological advances in DNA recovery and sequencing have
drastically expanded the scope of genetic analyses of ancient specimens
to the extent that full genomic investigations are now feasible and
are quickly becoming standard1. This trend has important implica-
tions for infectious disease research because genomic data from
ancient microbes may help to elucidate mechanisms of pathogen
evolution and adaptation for emerging and re-emerging infections.
Here we report a reconstructed ancient genome of Yersinia pestis at
30-fold average coverage from Black Death victims securely dated to
episodes of pestilence-associated mortality in London, England,
1348–1350. Genetic architecture and phylogenetic analysis indicate
that the ancient organism is ancestral to most extant strains and sits
very close to the ancestral node of all Y. pestis commonly associated
with human infection. Temporal estimates suggest that the Black
Death of 1347–1351 was the main historical event responsible for
the introduction and widespread dissemination of the ancestor to
all currently circulating Y. pestis strains pathogenic to humans, and
further indicates that contemporary Y. pestis epidemics have their
origins in the medieval era. Comparisons against modern genomes
reveal no unique derived positions in the medieval organism,
indicating that the perceived increased virulence of the disease
during the Black Death may not have been due to bacterial pheno-
type. These findings support the notion that factors other than
microbial genetics, such as environment, vector dynamics and host
susceptibility, should be at the forefront of epidemiological discus-
sions regarding emerging Y. pestis infections.

The Black Death of 1347–1351, caused by the bacterium Yersinia
pestis2,3, provides one of the best historical examples of an emerging
infection with rapid dissemination and high mortality, claiming an
estimated 30–50% of the European population in only a five-year
period4. Discrepancies in epidemiological trends between the medieval
disease and modern Y. pestis infections have ignited controversy over
the pandemic’s aetiologic agent5,6. Although ancient DNA investi-
gations have strongly implicated Y. pestis2,3 in the ancient pandemic,
genetic changes in the bacterium may be partially responsible for
differences in disease manifestation and severity. To understand the
organism’s evolution it is necessary to characterize the genetic changes
involved in its transformation from a sylvatic pathogen to one capable
of pandemic human infection on the scale of the Black Death, and to
determine its relationship with currently circulating strains. Here we
begin this discussion by presenting the first draft genome sequence of
the ancient pathogen.

Y. pestis is a recently evolved descendent of the soil-dwelling bacillus
Yersinia pseudotuberculosis7, which in the course of its evolution

acquired two additional plasmids (pMT1 and pPCP1) that provide it
with specialized mechanisms for infiltrating mammalian hosts. To
investigate potential evolutionary changes in one of these plasmids,
we reported on the screening of 46 teeth and 53 bones from the East
Smithfield collection of London, England for presence of the Y. pestis-
specific pPCP1 (ref. 3). Historical data indicate that the East Smithfield
burial ground was established in late 1348 or early 1349 specifically for
interment of Black Death victims8 (Supplementary Figs 1 and 2),
making the collection well-suited for genetic investigations of ancient
Y. pestis. DNA sequence data for five teeth obtained via molecular
capture of the full Y. pestis-specific pPCP1 revealed a C to T damage
pattern characteristic of authentic endogenous ancient DNA9, and
assembly of the pooled Illumina reads permitted the reconstruction
of 98.68% of the 9.6-kilobase plasmid at a minimum of twofold
coverage3.

To evaluate the suitability of capture-based methods for recon-
structing the complete ancient genome, multiple DNA extracts from
both roots and crowns stemming from four of the five teeth which
yielded the highest pPCP1 coverage3 were used for array-based enrich-
ment (Agilent) and subsequent high-throughput sequencing on the
Illumina GAII platform10. Removal of duplicate molecules and sub-
sequent filtering produced a total of 2,366,647 high quality chromo-
somal reads (Supplementary Table 1a, b) with an average fragment
length of 55.53 base pairs (Supplementary Fig. 4), which is typical for
ancient DNA. Coverage estimates yielded an average of 28.2 reads per
site for the chromosome, and 35.2 and 31.2 for the pCD1 and pMT1
plasmids, respectively (Fig. 1a, c, d and Supplementary Table 1b, c).
Coverage was predictably low for pPCP1 (Fig. 1e) because probes
specific to this plasmid were not included on the arrays. Coverage
correlated with GC content (Supplementary Fig. 6), a trend previously
observed for high-throughput sequence data11. The coverage on each
half of the chromosome was uneven due to differences in sequencing
depth between the two arrays, with 36.46 and 22.41 average reads per
site for array 1 and array 2, respectively. Although greater depth con-
tributed to more average reads per site, it did not increase overall
coverage, with both arrays covering 93.48% of the targeted regions
at a minimum of onefold coverage (Supplementary Table 1b). This
indicates that our capture procedure successfully retrieved template
molecules from all genomic regions accessible via this method, and
that deeper sequencing would not result in additional data for CO92
template regions not covered in our data set.

Genome architecture is known to vary widely among extant Y. pestis
strains12. To extrapolate gene order in our ancient genome, we ana-
lysed reads mapping to the CO92 reference for all extracts stemming
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from a single individual who yielded the highest coverage (individual
8291). Despite the short read length of our ancient sequences and the
highly repetitive nature of the Y. pestis genome, 2,221 contigs matching
CO92 were extracted, comprising a total of 4,367,867 bp. To identify
potential regions of the ancient genome that are architecturally distinct
from CO92, all reads not mapping to the CO92 reference were in turn
considered for contig construction. After filtering for a minimum
length of 500 bp, 2,134 contigs remained comprising 4,013,009 bp, of
which 30,959 stemmed from unmapped reads. Conventional BLAST
search queried against the CO92 genome identified matches for 2,105
contigs. Evidence of altered architecture was identified in 10 contigs
(Supplementary Table 2). An example of such a structural variant is
shown in Fig. 2, where reference-guided assembly incorporating
unmapped reads to span the breakpoint validates its reconstruction.
This specific genetic orientation is found only in Y. pseudotuberculosis
and Y. pestis strains Mictrotus 91001, Angola, Pestoides F and
B42003004, which are ancestral to all Y. pestis commonly associated
with human infections (branch 1 and branch 2 strains13,14).
Furthermore, discrepancies in the arrangement of this region in
branch 1 and branch 2 modern Y. pestis strains indicate that rearran-
gements occurred as separate events on different lineages.

Single-nucleotide differences between our ancient genome and the
CO92 reference surprisingly consisted of only 97 chromosomal posi-
tions, and 2 and 4 positions in the pCD1 and pMT1 plasmids, respec-
tively (Supplementary Table 3), indicating tight genetic conservation
in this organism over the last 660 years. Twenty-seven of these positions
were unreported in a previous analysis of extant Y. pestis diversity14 (Sup-
plementary Tables 3 and 4). Comparison of our ancient genome to its
ancestor Y. pseudotuberculosis revealed that the medieval sequence
contained the ancestral nucleotide for all 97 positions, indicating that

it does not possess any derived positions absent in other Y. pestis
strains. Two previously reported chromosomal differences3 were not
present in our genomic sequence data, suggesting that they probably

Figure 1 | Coverage plots for genomic regions sequenced. a, c–e, Coverage
plots for the chromosome (a) and the plasmids pMT1 (c), pCD1 (d) and pPCP
(e). Coverage in blue, GC content in green. Scale lines indicate 10-, 20-, 30-, 40-
and 50-fold coverage and 10%, 20%, 30%, 40% and 50% GC content. For
plasmids, red corresponds to coding regions, yellow to mobile elements.

Chromosome shows median coverage per gene. Plasmids show each site
plotted. Coverage distributions for the plasmids are shown in Supplementary
Fig. 5. b, Distributions show chromosomal coverage of array 1 (blue) and array
2 (red), indicating that deeper sequencing increases the number of reads per
site, but does not substantially influence overall coverage.

Yersinia pestis CO92

0 bp 2887089 bp 3118571 bp 4654728 bp

4595065 bp1233874 bp0 bp

600× 600×26× 26×

+ Unmapped
reads

B
(reverse

complement)

Yersinia pestis biovar Microtus strain 91001

A

BA

Figure 2 | Alignment of mapped reconstructed contigs against CO92 and
Microtus genomes. Reads mapped at positions A (blue) and B (green) are
231 kb apart in the linearized CO92 genome. Adjacent sequence is high
coverage although only 183 and 203 is shown due to space constraints (black)
for A and B, respectively. The structural variant was assembled using reads that
did not map to CO92 (red). Its position is shown on the linearized Microtus
91001 chromosome where the 9,096 bp contig maps with 100% identity.
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derived from deaminated cytosines that would have been removed in
the current investigation via uracil-DNA-glycosylase treatment before
array capture.

To place our ancient genome in a phylogenetic context, we charac-
terized all 1,694 previously identified phylogenetically informative posi-
tions14 (Supplementary Table 4), and compared those from our ancient
organism against aggregate base call data for 17 publicly available
Y. pestis genomes and the ancestral Y. pseudotuberculosis. When con-
sidered separately, sequences from three of the four victims fall only two
substitutions from the root of all extant human pathogenic Y. pestis
strains (Fig. 3a), and they show a closer relationship to branch 1 Y. pestis
than to branch 2; however, one of the four victims (individual 6330) was
infected with a strain that contained three additional derived positions
seen in all other branch 1 genomes14. This suggests either the presence of

multiple strains in the London 1348–1350 pandemic or microevolu-
tionary changes accruing in one strain, which is known to occur in
disease outbreaks15. Additional support for Y. pestis microevolution is
indicated by the presence of several variant positions for which
sequence data from one individual shows two different nucleotides at
comparable frequencies (Supplementary Table 5). Position 2896636,
for example, is a known polymorphic position in extant Y. pestis popu-
lations14, and this position shows the fixed derived state in one indi-
vidual (6330) and the polymorphic state in another (individual 8291) at
minimum fivefold coverage (Supplementary Fig. 7). This provides a
remarkable example of microevolution captured during an historical
pandemic. The remaining variance positions are unchanged in the 18
extant Yersinia genomes, thus they may be unique to the ancient
organism and are, therefore, of further interest. Additional sampling

Figure 3 | Phylogenetic placement and historical context for the East
Smithfield strain. a, Median network of ancient and modern Y. pestis based on
1,694 variant positions in modern genomes14. Coloured circles represent
different clades as defined in ref. 13. Gray circles represent hypothetical nodes.
b, Phylogenetic tree using 1,694 variable positions. Divergence time intervals
are shown in calendar years, with neighbour-joining bootstrap support (blue
italic) and Bayesian posterior probability (blue). Grey box indicates known

human pathogenic strains. A, NZ ACNQ01000; Nepal516, NC 008149; KIM10,
NC 004088; B, NZ AAYT01000; C, NZ ABAT01000; D, NZ ACNS01000; E, NZ
AAYS01000; F, NZ AAOS02000; CO92, NC 003143; G, NZ ABCD01000; H,
NZ AAYV01000; I, NC 014029; J, NZ AAYR01000; Antiqua, NC 008150.
c, Geographical origin of genome sequences used in a and b. d, Geographical
spread of the Black Death from infection routes reported in ref. 4.
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of ancient genomes will assist in determining the frequency of these
mutations in co-circulating Y. pestis strains, and will clarify the emer-
gence of branch 2 strains that are as yet unreported in ancient samples.

Consistent tree topologies were produced using several construction
methods and all major nodes were supported by posterior probability
(pp) values of .0.96 and bootstrap values .90 (Fig. 3b and Sup-
plementary Figs 8 and 9). The trees place the East Smithfield sequence
close to the ancestral node of all extant human pathogenic Y. pestis
strains (only two differences in 1,694 positions) and at the base of
branch 1 (Fig. 3b). A secure date for the East Smithfield site of
1348–1350 allowed us to assign a tip calibration to the ancient
sequence and thus date the divergence time of the modern genomes
and the East Smithfield genome using a Bayesian approach. Temporal
estimates indicate that all Y. pestis commonly associated with human
infection shared a common ancestor sometime between 668 and 729
years ago (AD 1282–1343, 95% highest probability density, HPD),
encompassing a much smaller time interval than recently published
estimates14 and further indicating that all currently circulating branch
1 and branch 2 isolates emerged during the thirteenth century at the
earliest (Fig. 3b), potentially stemming from an Eastern Asian source
as has been previously suggested14. This implies that the medieval
plague was the main historical event that introduced human popula-
tions to the ancestor of all known pathogenic strains of Y. pestis. This
further questions the aetiology of the sixth to eighth century Plague of
Justinian, popularly assumed to have resulted from the same pathogen:
our temporal estimates imply that the pandemic was either caused by a
Y. pestis variant that is distinct from all currently circulating strains
commonly associated with human infections, or it was another disease
altogether.

Although our approach of using an extant Y. pestis reference tem-
plate for bait design precluded our ability to identify genomic regions
that may have been present in the ancient organism and were sub-
sequently lost in CO92, genomic comparisons of our ancient sequence
against its closest outgroups may yield valuable insights into Y. pestis
evolution. The Microtus 91001 strain is the closest branch 1 and
branch 2 relative confirmed to be non-pathogenic to humans16, hence
genetic changes may represent contributions to the pathogen’s adapta-
tion to a human host. Comparisons against this outgroup revealed 113
changes (Supplementary Table 6a, b), many of which are found in
genes affecting virulence-associated functions like biofilm formation
(hmsT), iron-acquisition (iucD) or adaptation to the intracellular
environment (phoP). Similarly, although its virulence potential in
humans has yet to be confirmed to our knowledge, Y. pestis
B42003004 isolated from a Chinese marmot population17 has been
identified as the strain closest to the ancestral node of all Y. pestis
commonly associated with human plague, and thus may provide key
information regarding the organism’s evolution. Full genome com-
parison against the East Smithfield sequence revealed only eight single-
nucleotide differences (Supplementary Table 6c), six of which result in
non-synonymous changes (Supplementary Table 6d). Although these
differences probably do not affect virulence, the influence of gene loss,
gene gain or genetic rearrangements, all of which are well documented
in Y. pestis12,18, is as yet undetermined. In more recent evolutionary
terms, single-nucleotide differences in several known pathogenicity-
associated genes were found between our ancient genome and the
CO92 reference sequence (Supplementary Table 3), which may rep-
resent further adaptations to human hosts.

Through enrichment by DNA capture coupled with targeted high
throughput DNA sequencing, we have reconstructed a draft genome
for what is arguably the most devastating human pathogen in history,
and revealed that the medieval plague of the fourteenth century was
probably responsible for its introduction and widespread distribution
in human populations. This indicates that the pathogen implicated in
the Black Death has close relatives in the twenty-first century that are
both endemic and emerging19. Introductions of new pathogens to
populations are often associated with increased incidence and severity

of disease20 and although the mechanisms governing this phenomenon
are complex21, genetic data from ancient infectious diseases will pro-
vide invaluable contributions towards our understanding of host–
pathogen coevolution. The Black Death is a seminal example of an
emerging infection, travelling across Europe and claiming the lives of
an estimated 30 million people in only 5 years, which is much faster
than contemporary rates of bubonic or pneumonic plague infection22

and dissemination7,8. Regardless, although no extant Y. pestis strain
possesses the same genetic profile as our ancient organism, our data
suggest that few changes in known virulence-associated genes have
accrued in the organism’s 660 years of evolution as a human pathogen,
further suggesting that its perceived increased virulence in history23

may not be due to novel fixed point mutations detectable via the
analytical approach described here. At our current resolution, we posit
that molecular changes in pathogens are but one component of a
constellation of factors contributing to changing infectious disease
prevalence and severity, where genetics of the host population24,
climate25, vector dynamics26, social conditions27 and synergistic inter-
actions with concurrent diseases28 should be foremost in discussions of
population susceptibility to infectious disease and host–pathogen rela-
tionships with reference to Y. pestis infections.

METHODS SUMMARY
DNA from dental pulp was extracted and converted into sequencing libraries as
previously described3. Potential sequencing artefacts resulting from deaminated
nucleotides were eliminated by treatment of the DNA extracts with uracil-DNA-
glycosylase and endonuclease VIII. DNA extracts were subsequently converted
into sequencing libraries and amplified to incorporate unique sequence tags on
both ends of the molecule. Two Agilent DNA capture arrays were designed for
capture of the full Y. pestis chromosome (4.6 megabases), and the pCD1 (70 kb)
and pMT1 (100 kb) plasmids using the modern Y. pestis strain CO92 (accession
numbers NC_003143, NC_003131, NC_003134) for bait design with 3 bp tiling
density. Serial array capture was performed over two copies of each array using the
enriched fraction from the first round of capture as a template for a second round.
The resulting products were amplified and pooled in equimolar amounts. All
templates were sequenced for 76 cycles from both ends on the Illumina GAII
platform, and reads merged into single fragments were included in subsequent
analyses only if forward and reverse sequences overlapped by a minimum of 11 bp.
Reads were mapped against the CO92 genome using the software BWA, and
molecules with the same start and end coordinates were removed with the rmdup
program in the samtools suite. Reference-guided sequence assembly was per-
formed using Velvet version 1.1.03, with mapped and unmapped reads supplied
in separate channels. Single-nucleotide differences were determined at a minimum
of fivefold coverage and base frequency of at least 95% for both a pooled data set for
all individuals and one in which all individuals were treated separately. A median
network was constructed on these base calls using SplitsTree4. Phylogenetic trees
were constructed using parsimony, neighbour-joining (MEGA 4.1) and Bayesian
methods, and coalescence dates were determined in BEAST using both a strict and
a relaxed molecular clock (Supplementary Fig. 9).
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Research Chairs program (H.N.P., G.B.G.), the Canadian Institute for Health Research
(H.N.P.), the Social Science and Humanities Research Council of Canada (H.N.P.), the
Michael G. DeGroote Institute for Infectious Disease Research (H.N.P., B.K.C., D.J.D.E.),
an Early Research award from the Ontario Ministry of Research and Education (H.N.P.),
the Natural SciencesandEngineering ResearchCouncil ofCanada (D.J.D.E.), the James
S. McDonnell Foundation (D.J.D.E.), and the University at Albany Research Foundation
and Center for Social and Demographic Analysis and the Wenner-Gren Foundation
(S.N.D.).

Author Contributions K.I.B., S.N.D., D.J.D.E., J.K. and H.N.P. conceived the project. K.I.B.,
S.N.D., S.S. and J.W. performed skeletal sampling. K.I.B., J.K. and V.J.S. carried out
laboratory work. H.A.B., K.I.B., J.K., M.M. and H.N.P. designed experiments. K.I.B., G.B.G.,
J.K., H.N.P., V.J.S. and N.W. analysed the data. B.K.C., D.J.D.E., D.A.H. and J.B.M. provided
valuable interpretations. P.B. provided technical support. K.I.B., J.K. and H.N.P. wrote
the paper.

Author Information Sequencing data have been deposited in GenBank under the
accession number SRA045745. Reprints and permissions information is available at
www.nature.com/reprints. This paper is distributed under the terms of the Creative
CommonsAttributionNon-Commercial-ShareAlike licence, and is freelyavailable toall
readers at www.nature.com/nature. The authors declare no competing financial
interests. Readers are welcome to comment on the online version of this article at
www.nature.com/nature. Correspondence and requests for materials should be
addressed to J.K. (johannes.krause@uni-tuebingen.de) or H.N.P.
(poinarh@mcmaster.ca).

RESEARCH LETTER

5 1 0 | N A T U R E | V O L 4 7 8 | 2 7 O C T O B E R 2 0 1 1

Macmillan Publishers Limited. All rights reserved©2011

http://www.who.int/csr/resources/publications/WHO_HSE_EPR_2008_3w.pdf
http://www.who.int/csr/resources/publications/WHO_HSE_EPR_2008_3w.pdf
www.nature.com/nature
www.nature.com/nature
www.nature.com/nature
www.nature.com/nature
mailto:johannes.krause@uni-tuebingen.de
mailto:poinarh@mcmaster.ca


CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature10675

A draft genome of Yersinia pestis
from victims of the Black Death
Kirsten I. Bos, Verena J. Schuenemann, G. Brian Golding,
Hernán A. Burbano, Nicholas Waglechner, Brian K. Coombes,
Joseph B. McPhee, Sharon N.DeWitte, Matthias Meyer,
Sarah Schmedes, JamesWood, David J. D. Earn,
D. Ann Herring, Peter Bauer, Hendrik N. Poinar
& Johannes Krause

Nature 478, 506–510 (2011)

In this Letter, the GenBank accession number was wrongly printed
as SRA045745.1. It should be SRA045745. Supplementary Tables 3a
and 4 have also been corrected.
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