495 research outputs found
Magnetism and d-wave superconductivity on the half-filled square lattice with frustration
The role of frustration and interaction strength on the half-filled Hubbard
model is studied on the square lattice with nearest and next-nearest neighbour
hoppings t and t' using the Variational Cluster Approximation (VCA). At
half-filling, we find two phases with long-range antiferromagnetic (AF) order:
the usual Neel phase, stable at small frustration t'/t, and the so-called
collinear (or super-antiferromagnet) phase with ordering wave-vector
or , stable for large frustration. These are separated by a phase with
no detectable long-range magnetic order. We also find the d-wave
superconducting (SC) phase (), which is favoured by frustration if
it is not too large. Intriguingly, there is a broad region of coexistence where
both AF and SC order parameters have non-zero values. In addition, the physics
of the metal-insulator transition in the normal state is analyzed. The results
obtained with the help of the VCA method are compared with the large-U
expansion of the Hubbard model and known results for the frustrated J1-J2
Heisenberg model. These results are relevant for pressure studies of undoped
parents of the high-temperature superconductors: we predict that an insulator
to d-wave SC transition may appear under pressure.Comment: 12 pages, 10 figure
Pressure Dependence of Born Effective Charges, Dielectric Constant and Lattice Dynamics in SiC
The pressure dependence of the Born effective charge, dielectric constant and
zone-center LO and TO phonons have been determined for -SiC by a linear
response method based on the linearized augmented plane wave calculations
within the local density approximation. The Born effective charges are found to
increase nearly linearly with decreasing volume down to the smallest volume
studied, , corresponding to a pressure of about 0.8 Mbar. This
seems to be in contradiction with the conclusion of the turnover behavior
recently reported by Liu and Vohra [Phys.\ Rev.\ Lett.\ {\bf 72}, 4105 (1994)]
for -SiC. Reanalyzing their procedure to extract the pressure dependence of
the Born effective charges, we suggest that the turnover behavior they obtained
is due to approximations in the assumed pressure dependence of the dielectric
constant , the use of a singular set of experimental data
for the equation of state, and the uncertainty in measured phonon frequencies,
especially at high pressure.Comment: 25 pages, revtex, 5 postscript figures appended, to be published in
Phys. Rev.
Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide
Perovskite oxide surfaces catalyze oxygen exchange reactions that are crucial for fuel cells, electrolyzers, and thermochemical fuel synthesis. Here, by bridging the gap between surface analysis with atomic resolution and oxygen exchange kinetics measurements, we demonstrate how the exact surface atomic structure can determine the reactivity for oxygen exchange reactions on a model perovskite oxide. Two precisely controlled surface reconstructions with (4 × 1) and (2 × 5) symmetry on 0.5 wt.% Nb-doped SrTiO3(110) were subjected to isotopically labeled oxygen exchange at 450 °C. The oxygen incorporation rate is three times higher on the (4 × 1) surface phase compared to the (2 × 5). Common models of surface reactivity based on the availability of oxygen vacancies or on the ease of electron transfer cannot account for this difference. We propose a structure-driven oxygen exchange mechanism, relying on the flexibility of the surface coordination polyhedra that transform upon dissociation of oxygen molecules.Austrian Science Fund (SFB “ Functional Oxide Surfaces and Interfaces ” - FOXSI, Project F 45)European Research Council Advanced Grant (“OxideSurfaces” (Project ERC-2011-ADG_20110209))National Science Foundation (U.S.). Division of Materials Research (CAREER Award Grant No. 1055583
Efficient oxidative dearomatisations of substituted phenols using hypervalent iodine (iii) reagents and antiprotozoal evaluation of the resulting cyclohexadienones against T. b. rhodesiense and P. falciparum Strain NF54
Quinones and quinols are secondary metabolites of higher plants that are associated with many biological activities. The oxidative dearomatization of phenols induced by hypervalent iodine(III) reagents has proven to be a very useful synthetic approach for the preparation of these compounds, which are also widely used in organic synthesis and medicinal chemistry. Starting from several substituted phenols and naphthols, a series of cyclohexadienone and naphthoquinone derivatives were synthesized using different hypervalent iodine(III) reagents and evaluated for their in vitro antiprotozoal activity. Antiprotozoal activity was assessed against Plasmodium falciparum NF54 and Trypanosoma brucei rhodesiense STIB900. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. We found that benzyl naphthoquinone 5c was the most active and selective molecule against T. brucei rhodesiense (IC50 = 0.08 muM, SI = 275). Furthermore, the antiprotozoal assays revealed no specific effects. In addition, some key physicochemical parameters of the synthesised compounds were calculated
Excretion patterns of coccidian oocysts and nematode eggs during the reproductive season in Northern Bald Ibis (Geronticus eremita)
Individual reproductive success largely depends on the ability to optimize behaviour, immune function and the physiological stress response. We have investigated correlations between behaviour, faecal steroid metabolites, immune parameters, parasite excretion patterns and reproductive output in a critically endangered avian species, the Northern Bald Ibis (Geronticus eremita). In particular, we related haematocrit, heterophil/lymphocyte ratio, excreted immune-reactive corticosterone metabolites and social behaviour with parasite excretion and two individual fitness parameters, namely, number of eggs laid and number of fledglings. We found that the frequency of excretion of parasites’ oocysts and eggs tended to increase with ambient temperature. Paired individuals excreted significantly more samples containing nematode eggs than unpaired ones. The excretion of nematode eggs was also significantly more frequent in females than in males. Individuals with a high proportion of droppings containing coccidian oocysts were more often preened by their partners than individuals with lower excretion rates. We observed that the more eggs an individual incubated and the fewer offspring fledged, the higher the rates of excreted samples containing coccidian oocysts. Our results confirm that social behaviour, physiology and parasite burden are linked in a complex and context-dependent manner. They also contribute background information supporting future conservation programmes dealing with this critically endangered species
Signal-to-noise measurements utilizing a novel dual-energy multimedia detector
Dual-energy measurements are presented utilizing a novel slot-scan digital radiographic imaging detector, operating on gaseous solid state ionization principles. The novel multimedia detector has two basic functional components: a noble gas-filled detector volume operating on gas microstrip principles, and a solid state detector volume. The purpose of this study is to investigate the potential use of this multimedia detector for enhanced dual-energy imaging. The experimental results indicate that the multimedia detector exhibits a large subtracted signal-to-noise ratio. Although the intrinsic merit of this device is being explored for medical imaging, potential applications of the multimedia detector technology in other industrial areas, such as aerospace imaging, aviation security, and surveillance, are also very promising
Grain boundary diffusion and segregation of Cr in Ni Σ11(1̄13)[110] bicrystals: Decoding the role of grain boundary defects
Grain boundary diffusion of Cr in a near Σ11(1̄13)[110] Ni bicrystal is measured over a temperature interval between 503 K and 1203 K using the radiotracer technique. The grain boundary diffusion coefficients, Dgb, and the triple products, P=s⋅δ⋅Dgb, are determined in the C- and B-type kinetics regimes, respectively, with s being the segregation factor and δ the grain boundary width. Opposite to expectations, two distinct contributions to short-circuit diffusion along the nominally single interface are distinguished and related to the existence of two macroscopic facets with distinct grain boundary inclinations and, as a result, distinct structures. The experimental results indicate that the segregation factor of Cr in Ni is about unity, which is fully supported by ab initio calculations. Using classical atomistic simulations, Ni grain boundary self-diffusion coefficients are calculated for the symmetric and asymmetric facets. The computational simulations reveal accelerated self-diffusion kinetics along the asymmetric facet, attributing this phenomenon to the presence of disconnection-like defects. This elucidates the experimentally observed diffusion dynamics of chromium atoms, thereby corroborating the heterogeneous mechanisms governing atomic migration across distinct facets
Heart Rate during Conflicts Predicts Post-Conflict Stress-Related Behavior in Greylag Geese
Background: Social stressors are known to be among the most potent stressors in group-living animals. This is not only manifested in individual physiology (heart rate, glucocorticoids), but also in how individuals behave directly after a conflict. Certain ‘stress-related behaviors ’ such as autopreening, body shaking, scratching and vigilance have been suggested to indicate an individual’s emotional state. Such behaviors may also alleviate stress, but the behavioral context and physiological basis of those behaviors is still poorly understood. Methodology/Principal Findings: We recorded beat-to-beat heart rates (HR) of 22 greylag geese in response to agonistic encounters using fully implanted sensor-transmitter packages. Additionally, for 143 major events we analyzed the behavior shown by our focal animals in the first two minutes after an interaction. Our results show that the HR during encounters and characteristics of the interaction predicted the frequency and duration of behaviors shown after a conflict. Conclusions/Significance: To our knowledge this is the first study to quantify the physiological and behavioral responses to single agonistic encounters and to link this to post conflict behavior. Our results demonstrate that ‘stress-related behaviors’ are flexibly modulated by the characteristics of the preceding aggressive interaction and reflect the individual’s emotional strain, which is linked to autonomic arousal. We found no support for the stress-alleviating hypothesis, but we propose tha
- …
