109 research outputs found

    A new genetic algorithm framework based on Expected Annual Loss for optimizing seismic retrofitting in reinforced concrete frame structures

    Get PDF
    The design of seismic retrofitting for existing reinforced concrete frame structures concerns the determination of the position and the arrangement of reinforcements. Currently, this design practice is mainly based on trial-and-error attempts and engineers' experience, without a formal implementation of cost/performance optimization. Though, the implementation of this intervention is associated with significant costs, noticeable downtimes, and elevated invasiveness. This paper presents a new genetic algorithm-based framework for the optimization of two different retrofitting techniques (FRP column wrapping and concentric steel braces) that aims at minimizing costs considering indirectly the lessening of expected annual values. The feasibility of each tentative solution is controlled by the outcomes of static pushover analyses in the framework of the N2 method, achieved by a 3D fiber-section model implemented in OpenSees. Application of the framework in a realistic case study structure will show that the sustainability of retrofitting intervention is achievable by employing artificial intelligence aided structural design

    A novel genetic algorithm-based optimization framework for minimizing seismic retrofitting interventions costs in existing masonry structures

    Get PDF
    The pressing necessity of enhancing the seismic safety of existing masonry structures in earthquake-prone areas has led, in recent years, the research to propose a vast amount of new retrofitting techniques. However, retrofitting interventions are generally associated with important costs. Currently, there are no formal methods to optimize these interventions thus, their design is entrusted only to engineers' intuition. This paper presents a novel optimization framework aimed at the minimization of seismic retrofitting-related costs by an optimal placement (topological optimization) of reinforced plasters in masonry structures. In the proposed framework a 3D equivalent masonry model implemented in OpenSees is handled by a genetic algorithm developed in MATLAB® routine that iterates reinforcement configurations to match the optimal solution. The feasibility of each solution is controlled by the outcomes of a seismic static equivalent analysis by controlling the safety check of masonry walls with respect to both flexural and shear collapse. It is also shown, through a case study, that the proposed approach is efficient to pinpoint optimal retrofitting configurations, significantly reducing invasiveness and downtime

    Cost and EAL based optimization for seismic reinforcement of RC structures

    Get PDF
    In this paper, a new genetic algorithm-based framework aimed at efficiently design multiple seismic retrofitting interventions is proposed. The algorithm focuses on the minimization of retrofitting intervention costs of reinforced concrete (RC) frame structures. The feasibility of each tentative solution is assessed by considering in an indirect way the expected annual loss (EAL), this evaluation is performed by referring to different limit states whose repairing costs are expressed as a percentage of reconstruction costs and evaluating the respective mean annual frequency of exceedance. As the EAL takes into account the overall structural performances, to involves both serviceability and ultimate limit states, two different seismic retrofitting techniques are considered. In particular, FRP wrapping of columns is employed to increase the ductility of RC elements managing life safety and collapse limit state demands. On the other hand, steel bracings are used to increase the global stiffness of the structure and mainly increase operational and damage limit states performances. The optimization procedure is carried out by the novel genetic algorithm-based framework developed in Matlab® that is connected to a 3D RC frame fiber-section model implemented in OpenSees. For both the retrofitting systems, the algorithm provides their position within the structure (topological optimization) and their sizing. Results will show that seismic retrofitting can be effectively designed to increase the overall structural safety by efficaciously optimizing the intervention costs

    Autonomic responses to emotional linguistic stimuli and amplitude of low-frequency fluctuations predict outcome after severe brain injury

    Get PDF
    An accurate prognosis on the outcome of brain-injured patients with disorders of consciousness (DOC) remains a significant challenge, especially in the acute stage. In this study, we applied a multiple-technique approach to provide accurate predictions on functional outcome after 6 months in 15 acute DOC patients. Electrophysiological correlates of implicit cognitive processing of verbal stimuli and data-driven voxel-wise resting-state fMRI signals, such as the fractional amplitude of low-frequency fluctuations (fALFF), were employed. Event-related electrodermal activity, an index of autonomic activation, was recorded in response to emotional words and pseudo-words at baseline (T0). On the same day, patients also underwent a resting-state fMRI scan. Six months later (T1), patients were classified as outcome-negative and outcome-positive using a standard functional outcome scale. We then revisited the baseline measures to test their predictive power for the functional outcome measured at T1. We found that only outcome-positive patients had an earlier, higher autonomic response for words compared to pseudo-words, a pattern similar to that of healthy awake controls. Furthermore, DOC patients showed reduced fALFF in the posterior cingulate cortex (PCC), a brain region that contributes to autonomic regulation and awareness. The event-related electrodermal marker of residual cognitive functioning was found to have a significant correlation with residual local neuronal activity in the PCC. We propose that a residual autonomic response to cognitively salient stimuli, together with a preserved resting-state activity in the PCC, can provide a useful prognostic index in acute DOC

    Observing GW190521-like binary black holes and their environment with LISA

    Get PDF
    Binaries of relatively massive black holes like GW190521 have been proposed to form in dense gas environments, such as the disks of Active Galactic Nuclei (AGNs), and they might be associated with transient electromagnetic counterparts. The interactions of this putative environment with the binary could leave a significant imprint at the low gravitational wave frequencies observable with the Laser Interferometer Space Antenna (LISA). We show that LISA will be able to detect up to ten GW190521-like black hole binaries, with sky position errors ≲1\lesssim1 deg2^2. Moreover, it will measure directly various effects due to the orbital motion around the supermassive black hole at the center of the AGN, especially the Doppler modulation and the Shapiro time delay. Thanks to a careful treatment of their frequency domain signal, we were able to perform the full parameter estimation of Doppler and Shapiro-modulated binaries as seen by LISA. We find that the Doppler and Shapiro effects will allow for measuring the AGN parameters (radius and inclination of the orbit around the AGN, central black hole mass) with up to percent-level precision. Properly modeling these low-frequency environmental effects is crucial to determine the binary formation history, as well as to avoid biases in the reconstruction of the source parameters and in tests of general relativity with gravitational waves. <br

    Frequency and duration of SARS-CoV-2 shedding in oral fluid samples assessed by a modified commercial rapid molecular assay

    Get PDF
    Background: RT-PCR on nasopharyngeal (NPS)/oropharyngeal swabs is the gold standard for diagnosis of SARS-CoV-2 infection and viral load monitoring. Oral fluid (OF) is an alternate clinical sample, easy and safer to collect and could be useful for COVID-19 diagnosis, monitoring viral load and shedding. Methods: Optimal assay conditions and analytical sensitivity were established for the commercial Simplexa™ COVID-19 Direct assay adapted to OF matrix. The assay was used to test 337 OF and NPS specimens collected in parallel from 164 hospitalized patients; 50 bronchoalveolar lavage (BAL) specimens from a subgroup of severe COVID-19 cases were also analysed. Results: Using Simplexa™ COVID-19 Direct on OF matrix, 100% analytical detection down to 1 TCID50/mL (corresponding to 4 × 103 copies (cp)/mL) was observed. No crossreaction with other viruses transmitted through the respiratory toute was observed. Parallel testing of 337 OF and NPS samples showed highly concordant results (κ = 0.831; 95 % CI = 0.771–0.891), and high correlation of Ct values (r = 0.921; p &lt; 0.0001). High concordance and elevated correlation was observed also between OF and BAL. Prolonged viral RNA shedding was observed up to 100 days from symptoms onset (DSO), with 32% and 29% positivity observed in OF and NPS samples, respectively, collected between 60 and 100 DSO. Conclusions: Simplexa™ COVID-19 Direct assays on OF have high sensitivity and specificity to detect SARS-CoV-2 RNA and provide an alternative to NPS for diagnosis and monitoring SARS-CoV-2 shedding

    Pulsed Photoconductive Connected Slot Array Operating at the Sub-mm Wavelength Band

    Get PDF
    A novel pulsed photoconductive THz source is presented that is able to radiate mW-level average powers, over a large bandwidth by exploiting both the optical and electrical properties of photoconductive sources and the ultrawideband properties of connected antenna arrays. An optical system composed of a micro-lenses array splits the laser beam into N x N spots that host the active excitation of the antenna arrays. An “ad hoc” network has been adopted to bias the array active spots in order to implement a connected antenna array configuration. The array feeds a silicon lens to increase the directivity of the radiated THz beam. A slot array prototype has been designed, fabricated, and measured. The proposed solutions achieve excellent power radiation levels by making use of an accurate electromagnetic design. This solution can offer enhancements to any active system relying on pulsed photoconductive antennas

    Frequency and Duration of SARS-CoV-2 Shedding in Oral Fluid Samples Assessed by a Modified Commercial Rapid Molecular Assay

    Get PDF
    Background: RT-PCR on nasopharyngeal (NPS)/oropharyngeal swabs is the gold standard for diagnosis of SARS-CoV-2 infection and viral load monitoring. Oral fluid (OF) is an alternate clinical sample, easy and safer to collect and could be useful for COVID-19 diagnosis, monitoring viral load and shedding. Methods: Optimal assay conditions and analytical sensitivity were established for the commercial Simplexa™ COVID-19 Direct assay adapted to OF matrix. The assay was used to test 337 OF and NPS specimens collected in parallel from 164 hospitalized patients; 50 bronchoalveolar lavage (BAL) specimens from a subgroup of severe COVID-19 cases were also analysed. Results: Using Simplexa™ COVID-19 Direct on OF matrix, 100% analytical detection down to 1 TCID50/mL (corresponding to 4 × 103 copies (cp)/mL) was observed. No crossreaction with other viruses transmitted through the respiratory toute was observed. Parallel testing of 337 OF and NPS samples showed highly concordant results (κ = 0.831; 95 % CI = 0.771–0.891), and high correlation of Ct values (r = 0.921; p < 0.0001). High concordance and elevated correlation was observed also between OF and BAL. Prolonged viral RNA shedding was observed up to 100 days from symptoms onset (DSO), with 32% and 29% positivity observed in OF and NPS samples, respectively, collected between 60 and 100 DSO. Conclusions: Simplexa™ COVID-19 Direct assays on OF have high sensitivity and specificity to detect SARS-CoV-2 RNA and provide an alternative to NPS for diagnosis and monitoring SARS-CoV-2 shedding

    Leaky Lens Antenna as Optically Pumped Pulsed THz Emitter

    Get PDF
    Optically pumped pulsed THz emitters exploit the transient motion of photo-generated charge carriers in semiconductors, to produce, coupled to micro-antenna, radiated power over a wide bandwidth up to the THz frequencies. The radiation performance of the antenna greatly affects dispersion of the energy spectrum generated by the photoconductive source and if not properly designed it causes low radiated power. This work presents the design, the fabrication process, the electromagnetic and the thermal analyses of a pulsed photoconductive micro-antenna based on the leaky lens antenna concept. This device shows high radiation efficiency over a band ranging from 0.1 to 1.5 THz, thus being a suitable emitter for THz time-domain sensing system

    How many deficits in the same dyslexic brains? A behavioural and fMRI assessment of comorbidity in adult dyslexics

    Get PDF
    Dyslexia can have different manifestations: this has motivated different theories on its nature, on its underlying brain bases and enduring controversies on how to best treat it. The relative weight of the different manifestations has never been evaluated using both behavioural and fMRI measures, a challenge taken here to assess the major systems called into play in dyslexia by different theories. We found that adult well-compensated dyslexics were systematically impaired only in reading and in visuo-phonological tasks, while deficits for other systems (e.g., motor/cerebellar, visual magnocellular/motion perception) were only very occasional. In line with these findings, fMRI showed a reliable hypoactivation only for the task of reading, in the left occipito-temporal cortex (l-OTC). The l-OTC, normally a crossroad between the reading system and other systems, did not show the same level of intersection in dyslexics; yet, it was not totally silent because it responded, in segregated parts, during auditory phonological and visual motion perception tasks. This minimal behavioural and functional anatomical comorbidity demonstrates that a specific deficit of reading is the best description for developmental dyslexia, at least for adult well-compensated cases, with clear implications for rehabilitation strategies. The reduced intersection of multiple systems in the l-OTC suggests that dyslexics suffer from a coarser connectivity, leading to disconnection between the multiple domains that normally interact during reading
    • …
    corecore