9,957 research outputs found
Planetary meteorology Final report
Temperature profile, wind measurement, radiative heat transfer, and diurnal variations in Martian atmospher
Design of LTCC-based Ceramic Structure for Chemical Microreactor
The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM) fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s), mixer(s), reformer and combustor. Low-temperature co-fired ceramic (LTCC) technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g
Storm intensity and old-growth forest disturbances in the Amazon region
We analyzed the pattern of large forest disturbances or blow-downs apparently caused by severe storms in a mostly unmanaged portion of the Brazilian Amazon using 27 Landsat images and daily precipitation estimates from NOAA satellite data. For each Landsat a spectral mixture analysis (SMA) was applied. Based on SMA, we detected and mapped 279 patches (from 5 ha to 2,223 ha) characteristic of blow-downs. A total of 21,931 ha of forest were disturbed. We found a strong correlation between occurrence of blow-downs and frequency of heavy rainfall (Spearman\u27s rank, r2 = 0.84, p \u3c 0.0003). The recurrence intervals of large disturbances were estimated to be 90,000 yr for the eastern Amazon and 27,000 yr for the western Amazon. This suggests that weather patterns affect the frequency of large forest disturbances that may produce different rates of forest turnover in the eastern and western Amazon basin
Tropical Dry Forest Succession and the Contribution of Lianas to Wood Area Index (WAI)
The transmission and interception of light through the canopy is an important indicator of forest productivity in tropical forest ecosystems, and the amount of light that eventually reaches the forest floor is influenced by its interactions with leaves, branches, fruits, and flowers among many different canopy elements. While most studies of forest canopy light interception focus on leaf area index (LAI), very few studies have examined wood area index (WAI), which may account for a substantial component of light interception in tropical forests. The influence of lianas on the interception of light and their overall contribution to WAI is a potentially important factor, but it is generally overlooked because of its difficulty to assess. In this paper we evaluate the relative contribution that lianas have to the overall WAI and canopy openness as function of successional stage via a latitudinal comparison of sites across the Americas (Mexico, Costa Rica and Brazil). Our results suggest that lianas significantly increase WAI and decreases canopy openness. However, lianas were absent at all of our study sites where canopy openness exceeded 60%. Our data are the first to explicitly document the role of lianas in the estimation of WAI and, overall, they will contribute to better estimations of ecosystem level LAI in tropical environments, where there is a lack of data on WAI
Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities
Many complex networks display a mesoscopic structure with groups of nodes
sharing many links with the other nodes in their group and comparatively few
with nodes of different groups. This feature is known as community structure
and encodes precious information about the organization and the function of the
nodes. Many algorithms have been proposed but it is not yet clear how they
should be tested. Recently we have proposed a general class of undirected and
unweighted benchmark graphs, with heterogenous distributions of node degree and
community size. An increasing attention has been recently devoted to develop
algorithms able to consider the direction and the weight of the links, which
require suitable benchmark graphs for testing. In this paper we extend the
basic ideas behind our previous benchmark to generate directed and weighted
networks with built-in community structure. We also consider the possibility
that nodes belong to more communities, a feature occurring in real systems,
like, e. g., social networks. As a practical application, we show how
modularity optimization performs on our new benchmark.Comment: 9 pages, 13 figures. Final version published in Physical Review E.
The code to create the benchmark graphs can be freely downloaded from
http://santo.fortunato.googlepages.com/inthepress
- …