168 research outputs found

    Systolic blood pressure, chronic obstructive pulmonary disease and cardiovascular risk

    Get PDF
    \ua9 2023 Author(s) (or their employer(s)). Objective: In individuals with complex underlying health problems, the association between systolic blood pressure (SBP) and cardiovascular disease is less well recognised. The association between SBP and risk of cardiovascular events in patients with chronic obstructive pulmonary disease (COPD) was investigated. Methods: and analysis In this cohort study, 39 602 individuals with a diagnosis of COPD aged 55-90 years between 1990 and 2009 were identified from validated electronic health records (EHR) in the UK. The association between SBP and risk of cardiovascular end points (composite of ischaemic heart disease, heart failure, stroke and cardiovascular death) was analysed using a deep learning approach. Results: In the selected cohort (46.5% women, median age 69 years), 10 987 cardiovascular events were observed over a median follow-up period of 3.9 years. The association between SBP and risk of cardiovascular end points was found to be monotonic; the lowest SBP exposure group of <120 mm Hg presented nadir of risk. With respect to reference SBP (between 120 and 129 mm Hg), adjusted risk ratios for the primary outcome were 0.99 (95% CI 0.93 to 1.05) for SBP of <120 mm Hg, 1.02 (0.97 to 1.07) for SBP between 130 and 139 mm Hg, 1.07 (1.01 to 1.12) for SBP between 140 and 149 mm Hg, 1.11 (1.05 to 1.17) for SBP between 150 and 159 mm Hg and 1.16 (1.10 to 1.22) for SBP ≥160 mm Hg. Conclusion: Using deep learning for modelling EHR, we identified a monotonic association between SBP and risk of cardiovascular events in patients with COPD

    Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts

    Get PDF
    \ua9 2022 The Author(s). Published by Oxford University Press on behalf of the European Society of Cardiology. Aims: Deep learning has dominated predictive modelling across different fields, but in medicine it has been met with mixed reception. In clinical practice, simple, statistical models and risk scores continue to inform cardiovascular disease risk predictions. This is due in part to the knowledge gap about how deep learning models perform in practice when they are subject to dynamic data shifts; a key criterion that common internal validation procedures do not address. We evaluated the performance of a novel deep learning model, BEHRT, under data shifts and compared it with several ML-based and established risk models. Methods and results: Using linked electronic health records of 1.1 million patients across England aged at least 35 years between 1985 and 2015, we replicated three established statistical models for predicting 5-year risk of incident heart failure, stroke, and coronary heart disease. The results were compared with a widely accepted machine learning model (random forests), and a novel deep learning model (BEHRT). In addition to internal validation, we investigated how data shifts affect model discrimination and calibration. To this end, we tested the models on cohorts from (i) distinct geographical regions; (ii) different periods. Using internal validation, the deep learning models substantially outperformed the best statistical models by 6%, 8%, and 11% in heart failure, stroke, and coronary heart disease, respectively, in terms of the area under the receiver operating characteristic curve. Conclusion: The performance of all models declined as a result of data shifts; despite this, the deep learning models maintained the best performance in all risk prediction tasks. Updating the model with the latest information can improve discrimination but if the prior distribution changes, the model may remain miscalibrated

    Hi-BEHRT: Hierarchical Transformer-Based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records

    Get PDF
    \ua9 2022 IEEE. Electronic health records (EHR) represent a holistic overview of patients\u27 trajectories. Their increasing availability has fueled new hopes to leverage them and develop accurate risk prediction models for a wide range of diseases. Given the complex interrelationships of medical records and patient outcomes, deep learning models have shown clear merits in achieving this goal. However, a key limitation of current study remains their capacity in processing long sequences, and long sequence modelling and its application in the context of healthcare and EHR remains unexplored. Capturing the whole history of medical encounters is expected to lead to more accurate predictions, but the inclusion of records collected for decades and from multiple resources can inevitably exceed the receptive field of the most existing deep learning architectures. This can result in missing crucial, long-term dependencies. To address this gap, we present Hi-BEHRT, a hierarchical Transformer-based model that can significantly expand the receptive field of Transformers and extract associations from much longer sequences. Using a multimodal large-scale linked longitudinal EHR, the Hi-BEHRT exceeds the state-of-the-art deep learning models 1% to 5% for area under the receiver operating characteristic (AUROC) curve and 1% to 8% for area under the precision recall (AUPRC) curve on average, and 2% to 8% (AUROC) and 2% to 11% (AUPRC) for patients with long medical history for 5-year heart failure, diabetes, chronic kidney disease, and stroke risk prediction. Additionally, because pretraining for hierarchical Transformer is not well-established, we provide an effective end-to-end contrastive pre-training strategy for Hi-BEHRT using EHR, improving its transferability on predicting clinical events with relatively small training dataset

    Systolic Blood Pressure and Cardiovascular Risk in Patients with Diabetes: A Prospective Cohort Study

    Get PDF
    \ua9 2023 Lippincott Williams and Wilkins. All rights reserved. Background: Whether the association between systolic blood pressure (SBP) and risk of cardiovascular disease is monotonic or whether there is a nadir of optimal blood pressure remains controversial. We investigated the association between SBP and cardiovascular events in patients with diabetes across the full spectrum of SBP. Methods: A cohort of 49 000 individuals with diabetes aged 50 to 90 years between 1990 and 2005 was identified from linked electronic health records in the United Kingdom. Associations between SBP and cardiovascular outcomes (ischemic heart disease, heart failure, stroke, and cardiovascular death) were analyzed using a deep learning approach. Results: Over a median follow-up of 7.3 years, 16 378 cardiovascular events were observed. The relationship between SBP and cardiovascular events followed a monotonic pattern, with the group with the lowest baseline SBP of <120 mm Hg exhibiting the lowest risk of cardiovascular events. In comparison to the reference group with the lowest SBP (<120 mm Hg), the adjusted risk ratio for cardiovascular disease was 1.03 (95% CI, 0.97-1.10) for SBP between 120 and 129 mm Hg, 1.05 (0.99-1.11) for SBP between 130 and 139 mm Hg, 1.08 (1.01-1.15) for SBP between 140 and 149 mm Hg, 1.12 (1.03-1.20) for SBP between 150 and 159 mm Hg, and 1.19 (1.09-1.28) for SBP ≥160 mm Hg. Conclusions: Using deep learning modeling, we found a monotonic relationship between SBP and risk of cardiovascular outcomes in patients with diabetes, without evidence of a J-shaped relationship

    Referral for specialist follow-up and its association with post-discharge mortality among patients with systolic heart failure (from the National Heart Failure Audit for England and Wales)

    Get PDF
    For patients admitted with worsening heart failure, early follow-up after discharge is recommended. Whether outcomes can be improved when follow-up is done by cardiologists is uncertain. We aimed to determine the association between cardiology follow-up and risk of death for patients with heart failure discharged from hospital. Using data from the National Heart Failure Audit (England & Wales), we investigated the effect of referral to cardiology follow-up on 30-day and one-year mortality in 68 772 patients with heart failure and a reduced left ventricular ejection fraction (HFREF) discharged from 185 hospitals between 2007 to 2013. The primary analyses used instrumental variable analysis complemented by hierarchical logistic and propensity matched models. At the hospital level, rates of referral to cardiologists varied from 6% to 96%. The median odds ratio (OR) for referral to cardiologist was 2.3 (95% confidence interval [CI] 2.1, 2.5), suggesting that, on average, the odds of a patient being referred for cardiologist follow-up after discharge differed approximately 2.3 times from one randomly selected hospital to another one. Based on the proportion of patients (per region) referred for cardiology follow-up, referral for cardiology follow-up was associated with lower 30-day (OR 0.70; CI 0.55, 0.89) and one-year mortality (OR 0.81; CI 0.68, 0.95) compared with no plans for cardiology follow-up (i.e., standard follow-up done by family doctors). Results from hierarchical logistic models and propensity matched models were consistent (30-day mortality OR 0.66; CI 0.61, 0.72 and 0.66; CI 0.58, 0.76 for hierarchical and propensity matched models, respectively). For patients with HFREF admitted to hospital with worsening symptoms, referral to cardiology services for follow-up after discharge is strongly associated with reduced mortality, both early and late

    Sodium-based paracetamol: impact on blood pressure, cardiovascular events, and all-cause mortality

    Get PDF
    \ua9 The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.BACKGROUND AND AIMS: Effervescent formulations of paracetamol containing sodium bicarbonate have been reported to associate with increased blood pressure and a higher risk of cardiovascular diseases and all-cause mortality. Given the major implications of these findings, the reported associations were re-examined. METHODS: Using linked electronic health records data, a cohort of 475 442 UK individuals with at least one prescription of paracetamol, aged between 60 and 90 years, was identified. Outcomes in patients taking sodium-based paracetamol were compared with those taking non-sodium-based formulations of the same. Using a deep learning approach, associations with systolic blood pressure (SBP), major cardiovascular events (myocardial infarction, heart failure, and stroke), and all-cause mortality within 1 year after baseline were investigated. RESULTS: A total of 460 980 and 14 462 patients were identified for the non-sodium-based and sodium-based paracetamol exposure groups, respectively (mean age: 74 years; 64% women). Analysis revealed no difference in SBP [mean difference -0.04 mmHg (95% confidence interval -0.51, 0.43)] and no association with major cardiovascular events [relative risk (RR) 1.03 (0.91, 1.16)]. Sodium-based paracetamol showed a positive association with all-cause mortality [RR 1.46 (1.40, 1.52)]. However, after further accounting of other sources of residual confounding, the observed association attenuated towards the null [RR 1.08 (1.01, 1.16)]. Exploratory analyses revealed dysphagia and related conditions as major sources of uncontrolled confounding by indication for this association. CONCLUSIONS: This study does not support previous suggestions of increased SBP and an elevated risk of cardiovascular events from short-term use of sodium bicarbonate paracetamol in routine clinical practice

    Sodium-based paracetamol: impact on blood pressure, cardiovascular events, and all-cause mortality

    Get PDF
    Background Effervescent formulations of paracetamol containing sodium bicarbonate have been reported to associate with increased and Aims blood pressure and a higher risk of cardiovascular diseases and all-cause mortality. Given the major implications of these findings, the reported associations were re-examined. Methods Using linked electronic health records data, a cohort of 475 442 UK individuals with at least one prescription of paracetamol, aged between 60 and 90 years, was identified. Outcomes in patients taking sodium-based paracetamol were compared with those taking non–sodium-based formulations of the same. Using a deep learning approach, associations with systolic blood pressure (SBP), major cardiovascular events (myocardial infarction, heart failure, and stroke), and all-cause mortality within 1 year after baseline were investigated. Results A total of 460 980 and 14 462 patients were identified for the non–sodium-based and sodium-based paracetamol exposure groups, respectively (mean age: 74 years; 64% women). Analysis revealed no difference in SBP [mean difference −0.04 mmHg (95% confidence interval −0.51, 0.43)] and no association with major cardiovascular events [relative risk (RR) 1.03 (0.91, 1.16)]. Sodium-based paracetamol showed a positive association with all-cause mortality [RR 1.46 (1.40, 1.52)]. However, after further accounting of other sources of residual confounding, the observed association attenuated towards the null [RR 1.08 (1.01, 1.16)]. Exploratory analyses revealed dysphagia and related conditions as major sources of uncontrolled confounding by indication for this association. Conclusions This study does not support previous suggestions of increased SBP and an elevated risk of cardiovascular events from short-term use of sodium bicarbonate paracetamol in routine clinical practice

    Stratification of diabetes in the context of comorbidities, using representation learning and topological data analysis

    Get PDF
    \ua9 2023, The Author(s). Diabetes is a heterogenous, multimorbid disorder with a large variation in manifestations, trajectories, and outcomes. The aim of this study is to validate a novel machine learning method for the phenotyping of diabetes in the context of comorbidities. Data from 9967 multimorbid patients with a new diagnosis of diabetes were extracted from Clinical Practice Research Datalink. First, using BEHRT (a transformer-based deep learning architecture), the embeddings corresponding to diabetes were learned. Next, topological data analysis (TDA) was carried out to test how different areas in high-dimensional manifold correspond to different risk profiles. The following endpoints were considered when profiling risk trajectories: major adverse cardiovascular events (MACE), coronary artery disease (CAD), stroke (CVA), heart failure (HF), renal failure (RF), diabetic neuropathy, peripheral arterial disease, reduced visual acuity and all-cause mortality. Kaplan Meier curves were plotted for each derived phenotype. Finally, we tested the performance of an established risk prediction model (QRISK) by adding TDA-derived features. We identified four subgroups of patients with diabetes and divergent comorbidity patterns differing in their risk of future cardiovascular, renal, and other microvascular outcomes. Phenotype 1 (young with chronic inflammatory conditions) and phenotype 2 (young with CAD) included relatively younger patients with diabetes compared to phenotypes 3 (older with hypertension and renal disease) and 4 (older with previous CVA), and those subgroups had a higher frequency of pre-existing cardio-renal diseases. Within ten years of follow-up, 2592 patients (26%) experienced MACE, 2515 patients (25%) died, and 2020 patients (20%) suffered RF. QRISK3 model’s AUC was augmented from 67.26% (CI 67.25–67.28%) to 67.67% (CI 67.66–67.69%) by adding specific TDA-derived phenotype and the distances to both extremities of the TDA graph improving its performance in the prediction of CV outcomes. We confirmed the importance of accounting for multimorbidity when risk stratifying heterogenous cohort of patients with new diagnosis of diabetes. Our unsupervised machine learning method improved the prediction of clinical outcomes

    Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study

    Get PDF
    AIMS: Aortic valve stenosis is commonly considered a degenerative disorder with no recommended preventive intervention, with only valve replacement surgery or catheter intervention as treatment options. We sought to assess the causal association between exposure to lipid levels and risk of aortic stenosis. METHODS AND RESULTS: Causality of association was assessed using two-sample Mendelian randomization framework through different statistical methods. We retrieved summary estimations of 157 genetic variants that have been shown to be associated with plasma lipid levels in the Global Lipids Genetics Consortium that included 188 577 participants, mostly European ancestry, and genetic association with aortic stenosis as the main outcome from a total of 432 173 participants in the UK Biobank. Secondary negative control outcomes included aortic regurgitation and mitral regurgitation. The odds ratio for developing aortic stenosis per unit increase in lipid parameter was 1.52 [95% confidence interval (CI) 1.22-1.90; per 0.98 mmol/L] for low density lipoprotein (LDL)-cholesterol, 1.03 (95% CI 0.80-1.31; per 0.41 mmol/L) for high density lipoprotein (HDL)-cholesterol, and 1.38 (95% CI 0.92-2.07; per 1 mmol/L) for triglycerides. There was no evidence of a causal association between any of the lipid parameters and aortic or mitral regurgitation. CONCLUSION: Lifelong exposure to high LDL-cholesterol increases the risk of symptomatic aortic stenosis, suggesting that LDL-lowering treatment may be effective in its prevention

    Evaluating Acquisition Time of rfMRI in the Human Connectome Project for Early Psychosis. How Much Is Enough?

    Get PDF
    Resting-state functional MRI (rfMRI) correlates activity across brain regions to identify functional connectivity networks. The Human Connectome Project (HCP) for Early Psychosis has adopted the protocol of the HCP Lifespan Project, which collects 20 min of rfMRI data. However, because it is difficult for psychotic patients to remain in the scanner for long durations, we investigate here the reliability of collecting less than 20 min of rfMRI data. Varying durations of data were taken from the full datasets of 11 subjects. Correlation matrices derived from varying amounts of data were compared using the Bhattacharyya distance, and the reliability of functional network ranks was assessed using the Friedman test. We found that correlation matrix reliability improves steeply with longer windows of data up to 11–12 min, and ≥14 min of data produces correlation matrices within the variability of those produced by 18 min of data. The reliability of network connectivity rank increases with increasing durations of data, and qualitatively similar connectivity ranks for ≥10 min of data indicates that 10 min of data can still capture robust information about network connectivities
    • …
    corecore