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ABSTRACT
Objective  In individuals with complex underlying 
health problems, the association between systolic blood 
pressure (SBP) and cardiovascular disease is less well 
recognised. The association between SBP and risk of 
cardiovascular events in patients with chronic obstructive 
pulmonary disease (COPD) was investigated.
Methods and analysis  In this cohort study, 39 602 
individuals with a diagnosis of COPD aged 55–90 years 
between 1990 and 2009 were identified from validated 
electronic health records (EHR) in the UK. The association 
between SBP and risk of cardiovascular end points 
(composite of ischaemic heart disease, heart failure, 
stroke and cardiovascular death) was analysed using a 
deep learning approach.
Results  In the selected cohort (46.5% women, median 
age 69 years), 10 987 cardiovascular events were 
observed over a median follow-up period of 3.9 years. 
The association between SBP and risk of cardiovascular 
end points was found to be monotonic; the lowest SBP 
exposure group of <120 mm Hg presented nadir of risk. 
With respect to reference SBP (between 120 and 129 
mm Hg), adjusted risk ratios for the primary outcome 
were 0.99 (95% CI 0.93 to 1.05) for SBP of <120 mm 
Hg, 1.02 (0.97 to 1.07) for SBP between 130 and 139 
mm Hg, 1.07 (1.01 to 1.12) for SBP between 140 and 
149 mm Hg, 1.11 (1.05 to 1.17) for SBP between 
150 and 159 mm Hg and 1.16 (1.10 to 1.22) for SBP 
≥160 mm Hg.
Conclusion  Using deep learning for modelling EHR, we 
identified a monotonic association between SBP and risk 
of cardiovascular events in patients with COPD.

INTRODUCTION
Systolic blood pressure (SBP) is a well-known risk 
factor for cardiovascular diseases.1–3 However, in 
subgroups with complex underlying health condi-
tions, the association of SBP with cardiovascular 
outcomes is less well understood. Often, in these 
patient groups, a so-called J-shaped association is 
reported, where the association between SBP and 
risk of cardiovascular events has an optimum, above 
and below which the risk increases.4 5

In patients with chronic obstructive pulmonary 
disease (COPD), the relationship remains unclear. 
Independently, SBP and COPD have both been asso-
ciated with a higher risk of cardiovascular disease 
(CVD).2 3 6 7 However, there is a dearth of evidence 
when it comes to conclusively understanding the 
relationship between SBP and risk of cardiovas-
cular end points in patients with COPD. A J-shaped 

association between SBP and risk of cardiovascular 
events was found in a previous observational anal-
ysis using traditional statistical modelling in patients 
with COPD who were at risk of developing CVD.4 
However, observational studies using conventional 
statistical modelling might be limited in investi-
gating this question. The adjusted variables need to 
be manually chosen and their relationship assumed 
by researchers, naturally exposing models to issues 
of residual confounding. Additionally, in subgroups 
of patients with multiple comorbidities at baseline 
and a large number of complicated factors of risk 
and prevention, confounding factors are lesser 
understood; as a result, conventional statistical 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ In patients with chronic obstructive 
pulmonary disease (COPD), the relationship 
between systolic blood pressure and risk of 
cardiovascular events is poorly understood.

	⇒ One observational study using conventional 
statistical modelling, which requires manual 
confounder selection and is found to be 
inadequate in modelling high-risk cohorts, has 
shown a J-shaped association, with increased 
risk above and below an apparently optimal 
systolic blood pressure value.

WHAT THIS STUDY ADDS
	⇒ With recent access to comprehensive, 
routine electronic health records data and 
developments in causal deep learning 
modelling capable of extracting and adjusting 
for confounders both known and latent in 
medical history, our longitudinal cohort study 
on about 40 000 patients with COPD with and 
without prior cardiovascular disease captured 
a monotonic relationship between systolic 
blood pressure and risk of cardiovascular events 
rejecting the J-shaped curve hypothesis.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ While current guidelines recommend a systolic 
blood pressure target of 130 mm Hg (140 
mm Hg in the elderly) in patients with COPD, 
our study demonstrates a nadir of risk at 
<120 mm Hg for cardiovascular outcomes in 
line with established knowledge concerning 
cardiovascular risk.
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models with insufficient adjustment can result in confounded or 
spurious J-shaped associations.2 8–10

With the availability of comprehensive electronic health 
records (EHR) and the advancement of deep learning (DL) causal 
modelling, the opportunity for more accurate modelling of asso-
ciations among subgroups with poorer health has arisen.10–12 
While traditional modelling requires manual confounder selec-
tion, DL approaches such as Targeted Bidirectional EHR Trans-
former (T-BEHRT) automatically extract latent features that are 
confounding the association and more accurately estimate risk 
ratio (RR) in observational settings.10 12

In this study, we applied the T-BEHRT model to evaluate the 
association between SBP and risk of cardiovascular outcomes in 
a cohort of 39 602 patients with COPD.

METHODS
Study setting and participants
We used retrospective anonymised EHR data from Clinical Prac-
tice Research Datalink (CPRD), an EHR database representative 
of the UK population that has been validated for epidemiolog-
ical research.13 14 We used EHR from two data sources within 
CPRD to identify a cohort of 39 602 individuals with COPD: 
primary care and secondary care (Hospital Episode Statistics 
(HES)). Those between 55 and 90 years of age with at least one 
blood pressure measurement taken between the years 1990 and 
2009 were included in this study with index date (baseline) being 
defined as the date of the first SBP measurement in this time 
period (online supplemental figure S1). COPD was identified at 

baseline using phenotyping methods validated for use on CPRD 
data.15

This cohort study followed the Strengthening the Reporting 
of Observational Studies in Epidemiology reporting guidelines.

Exposures
The exposure variable in this study was SBP and was derived from 
the CPRD measurements dataset. Blood pressure measurement 
data are recorded by staff at the general practice (GP) during 
a visit/consultation.14 In our study, we extracted SBP values 
and excluded measurements <50 and >300 mm Hg as recom-
mended by previously published methods to clean measurements 
data.16 Next, the exposure status for a patient was calculated 
as mean of the SBP measurements in the first 12 months after 
baseline (ie, exposure period). Patients were categorised into six 
exposure categories of this averaged measure of SBP over the 
course of the exposure period: <120 mm Hg, 120–129 mm Hg 
(reference), 130–139 mm Hg, 140–149 mm Hg, 150–159 mm 
Hg and ≥160 mm Hg.

Outcomes
The primary outcome was fatal/non-fatal CVDs defined as a 
composite of ischaemic heart disease (IHD), heart failure, stroke 
and cardiovascular-related death. Secondary outcomes investi-
gated in this study were individual components of the defined 
primary outcome: (1) IHD, (2) heart failure and (3) stroke. 
We identified cardiovascular events using three data sources 
in CPRD: (1) primary care, (2) secondary care (HES) and (3) 
the Office of National Statistics (cause-specific mortality) using 
previously published phenotyping algorithms.15 Read codes were 
used to identify the conditions in the primary care setting while 
International Classification of Diseases 10th Revision codes were 
used to identify cases in the secondary care and mortality setting. 
Follow-up period started 1 year from baseline (ie, following the 
exposure period). Events within 5 years of the follow-up period 
(ie, between 1 year and 6 years after baseline) were captured for 
analysis; this feature of study design was incorporated to avoid 
conducting association estimation in the time period overlap-
ping with the exposure period (ie, the first 12 months following 
baseline). Those who had events or left the study within the first 
12 months following baseline were removed from the analysis as 
consistent with similar past studies.10

Statistical and deep learning analyses
For analyses of the primary and secondary outcomes, the DL 
model, T-BEHRT was implemented.12 The T-BEHRT model is 
a DL approach that uses minimally processed EHR to estimate 
RR more accurately than other statistical and DL benchmark 
models.12 The model incorporates EHR records, specifically 
diagnoses and medications—longitudinal in nature—along 
with few static attributes of the patient (ie, sex, smoking status) 
and adjusts for confounding features in the medical history of 
the patient (online supplemental figure S2).12 In addition to 
adjusting for confounders and estimating risk of outcome, the 
T-BEHRT model estimates probability of being assigned to a 
particular exposure status (propensity score).12 17 By conducting 
both outcome and propensity score prediction, the DL frame-
work offers the opportunity to conduct doubly robust estima-
tion using propensity score modelling in order to limit issues 
of selection bias (further information in online supplemental 
methods).17

In order to compare our DL approach against established 
statistical modelling, we implemented logistic regression (LR) 

Figure 1  Cohort selection flow chart. Process for selecting cohort 
used in the study of the association between systolic blood pressure 
(BP) and risk of cardiovascular events in patients with chronic 
obstructive pulmonary disease (COPD) using observational data from 
the Clinical Practice Research Datalink (CPRD) database.

 on M
arch 1, 2024 by guest. P

rotected by copyright.
http://heart.bm

j.com
/

H
eart: first published as 10.1136/heartjnl-2023-322431 on 20 A

pril 2023. D
ow

nloaded from
 

https://dx.doi.org/10.1136/heartjnl-2023-322431
https://dx.doi.org/10.1136/heartjnl-2023-322431
https://dx.doi.org/10.1136/heartjnl-2023-322431
https://dx.doi.org/10.1136/heartjnl-2023-322431
http://heart.bmj.com/


1218 Rao S, et al. Heart 2023;109:1216–1222. doi:10.1136/heartjnl-2023-322431

Cardiac risk factors and prevention

modelling to investigate the association between SBP and risk 
of cardiovascular outcomes in those with COPD. The SBP expo-
sure group was included as a categorical variable. Since we moti-
vated our work with findings from the research conducted by 
Byrd et al, we adjusted for the same variables as those chosen in 
their research: sex, age, body mass index (BMI), smoking status 
(current, former, never a smoker), beta-blocker use, long-acting 
beta-agonist (LABA) use and inhaled corticosteroid use.4 In a 
second LR model with an expanded set of predictors including 
known cardiovascular risk factors, we additionally adjusted for 
triglycerides (TG), low-density lipoprotein (LDL), total choles-
terol (TC), atrial fibrillation, rheumatoid arthritis, severe mental 
illness (psychosis, schizophrenia or bipolar disorder), chronic 
kidney disease and diabetes. Diagnoses and medication use were 
identified using validated phenotyping algorithms.15 18 19 For 
BMI, TC, TG and LDL, average of the measurements recorded 
in the 36 months before baseline were computed to minimise 

issues of random measurement error.2 20 We conducted impu-
tations on missing variables to ensure fairer comparison with 
the DL approach. Multiple imputations using chained equa-
tions were implemented (15 imputations) to impute the contin-
uous and categorical missing variables: BMI, TC, TG, LDL and 
smoking status. Estimation of RR was conducted using the direct 
standardisation method (further elaboration in online supple-
mental methods).21

Five sensitivity analyses were pursued in our studies using 
the T-BEHRT model. First, we investigated the association of 
SBP and cardiovascular risk in patients who had not taken anti-
hypertensives during the follow-up period. Antihypertensives 
are established medications for lowering high blood pressure, 
thereby potentially attenuating cardiovascular risk; hence, we 
conducted this sensitivity analysis in order to investigate the 
undiluted association between SBP and risk of cardiovascular 
outcomes in patients with COPD.22 Second, to investigate the 

Table 1  Characteristics of patients by systolic blood pressure categories at index date

SBP categories <120 mm Hg 120–129 mm Hg 130–139 mm Hg 140–149 mm Hg 150–159 mm Hg ≥160 mm Hg

No. (%) 3943 (10.0) 5870 (14.8) 8097 (20.4) 9050 (22.9) 6101 (15.4) 6541 (16.5)

Follow-up, years (IQR) 3.4 (1.1–5.0) 3.0 (1.5–5.0) 4.0 (1.6–5.0) 4.0 (1.6–5.0) 4.0 (1.5–5.0) 3.7 (1.5–5.0)

Age, years (IQR) 66.0 (58.0–75.0) 67.0 (58.0–75.0) 68.0 (59.0–76.0) 69.0 (61.0–77.0) 70.0 (62.0–77.0) 72.0 (65.0–78.0)

Women (%) 1892 (48.0) 2695 (45.9) 3774 (46.6) 4179 (46.2) 2765 (45.3) 3142 (48.0)

YOB (IQR) 1937 (1927–1945) 1936 (1927–1945) 1935 (1926–1944) 1933 (1925–1942) 1931 (1924–1940) 1927 (1921–1935)

BMI* kg/m2 (IQR) 25.7 (24.0–27.0) 26.0 (24.4–27.2) 26.0 (24.7–27.4) 25.9 (24.7–27.2) 25.9 (24.8–27.1) 25.6 (24.7–26.8)

LDL*, mmol/L (IQR) 3.1 (2.9–3.2) 3.1 (2.9–3.2) 3.1 (2.9–3.2) 3.1 (3.0–3.2) 3.1 (3.0–3.2) 3.1 (3.0–3.2)

TG*, mmol/L (IQR) 1.6 (1.4–1.8) 1.6 (1.4–1.8) 1.6 (1.4–1.8) 1.6 (1.4–1.8) 1.6 (1.4–1.8) 1.6 (1.4–1.7)

TC*, mmol/L (IQR) 5.3 (5.0–5.7) 5.3 (5.0–5.6) 5.3 (5.0–5.6) 5.3 (5.0–5.6) 5.3 (5.0–5.6) 5.3 (5.0–5.6)

Smoking status*

 � Current smoker (%) 1960 (49) 2831 (48) 3627 (44) 4074 (45) 2728 (44) 3049 (46)

 � Former smoker (%) 1453 (36) 2131 (36) 3148 (38) 3490 (38) 2336 (38) 2307 (35)

 � Never smoker (%) 530 (13) 908 (15) 1322 (16) 1486 (16) 1037 (16) 1185 (18)

Disease at baseline

 � IHD (%) 711 (18.0) 872 (14.9) 1131 (14.0) 1085 (12.0) 650 (10.7) 670 (10.2)

 � CKD (%) 41 (1.0) 36 (0.6) 38 (0.5) 51 (0.6) 30 (0.5) 34 (0.5)

 � Diabetes (%) 268 (6.8) 477 (8.1) 684 (8.4) 618 (6.8) 390 (6.4) 300 (4.6)

 � Severe mental illness (%) 47 (1.2) 62 (1.1) 54 (0.7) 46 (0.5) 29 (0.5) 33 (0.5)

 � Atrial fibrillation (%) 290 (7.4) 319 (5.4) 397 (4.9) 386 (4.3) 220 (3.6) 225 (3.4)

Medications at baseline

 � Antihypertensive (%) 1283 (32.5) 1898 (32.3) 2851 (35.2) 3273 (36.2) 2337 (38.3) 2444 (37.4)

 � IC (%) 2221 (56.3) 3214 (54.8) 4557 (56.3) 5280 (58.3) 3617 (59.3) 3874 (59.2)

 � LABA (%) 637 (16.2) 873 (14.9) 1271 (15.7) 1263 (14.0) 756 (12.4) 602 (9.2)

Values presented are median with IQR or percentage (%).
*Percentage of missing variables—BMI (56.3%), smoking status (24.4%), TC (71.7%), TG (80.7%), LDL (85.6%).
BMI, body mass index; CKD, chronic kidney disease; IC, inhaled corticosteroids; IHD, ischaemic heart disease; LABA, long-acting beta-agonists; LDL, low-density lipoprotein; TC, 
total cholesterol; TG, triglycerides; YOB, year of birth.;

Figure 2  Forest plot of risk ratio estimates of the Targeted Bidirectional EHR Transformer model with 95% CIs for the association of systolic blood 
pressure and the primary outcome. From the left, the six exposure groups are shown in first column. Number of events and total number of patients in 
each exposure group is shown in second column. The forest plot and corresponding risk ratio estimates are shown in the right-most column relative to 
the reference class, 120–129 mm Hg. The effect size is plotted on a logarithmic scale. For the reference category, there is no CI.
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effects of time period, we limited the investigation to only 
include those with baseline after 1 January 2001. Third and 
fourth, to mitigate issues of reverse causality, we investigated 
the primary outcome excluding individuals who had cardio-
vascular events in the first 12 and 24 months of the follow-up 
period, respectively. Fifth, in order to investigate the association 
in smokers, we limited the analysis to only include current and 
former smokers in the cohort.

Patient and public involvement
Patients were not involved in this research for the development 
of the research question, exposure definition or the outcome 
definition. They were not involved in any form for any possible 
recruitment, design or implementation of this study. There are 
no current plans to involve patients in the dissemination stage 
of this study.

RESULTS
Population statistics
A total of 39 602 individuals with COPD at baseline were 
included in our analysis (figure 1). The median follow-up time 
was 3.9 years (IQR 1.5–5.0) with 10 987 events, and the median 
age at baseline, 69 years (IQR 60–76) (table  1). Patients with 
lower SBP had a higher percentage of atrial fibrillation, chronic 
kidney disease and IHD and were more likely to be current 
smokers at baseline. Also, patients with lower SBP had more 
clinical encounters (medications and diagnoses) recorded in GP/
secondary care (online supplemental figure S3). However, indi-
viduals with a higher SBP had a higher percentage of antihyper-
tensive usage.

Association of systolic blood pressure and risk of 
cardiovascular events
The T-BEHRT model estimated a monotonic relationship 
between SBP and the primary outcomes in patients with COPD 
(figure 2). By contrast, the crude and adjusted LR estimates of 
RR both demonstrate a nadir of risk at SBP between 130 and 

139 mm Hg (online supplemental figure S4). The adjusted LR 
model with expanded set of predictors demonstrated similar 
trends as compared with the base-adjusted LR model (ie, 
predictors defined in Byrd et al) for the analysis of the primary 
outcome (online supplemental figure S5A).4 All models found 
that ≥160 mm Hg demonstrated greatest risk of cardiovascular 
events.

In analyses of the components of the primary outcome, the 
T-BEHRT model showed a monotonic association between SBP 
and risk of individual cardiovascular end points with lowest 
risk at <120 mm Hg in comparison with the reference cate-
gory (figure 3). Additionally, for end points of heart failure and 
IHD, the crude and adjusted LR estimates of RR found SBP 
between 130 and 150 mm Hg to contribute to the lowest risk of 
secondary outcomes (online supplemental figure S6) with little 
deviation in findings from the adjusted LR approach using the 
expanded predictor set (online supplemental figure S5B). All four 
approaches found <120 mm Hg is associated with the lowest 
risk of stroke. Lastly, the trends discovered in the five sensitivity 
analyses demonstrated little deviation from the patterns found in 
the main analysis (figure 4).

DISCUSSION
Using a DL approach for longitudinal EHR, we found that SBP 
was monotonically associated with cardiovascular risk in 39 602 
patients with COPD. Individuals with SBP <120 mm Hg were 
found to have the lowest risk of both the primary and secondary 
outcomes with little material deviation in the trends found in the 
sensitivity analyses.

SBP is established to be log-linearly associated with cardiovas-
cular risk in the general population and in fact, naturally below 
average blood pressure values in industrialised communities.3 23 24 
However, in groups with prior CVDs and associated risk factors, 
the relationship remains insufficiently described. In this context 
of high-risk patients—such as those with diabetes, IHD and other 
risk factors at study entry—many observational studies reject the 
monotonic relationship between SBP and cardiovascular risk, 

Figure 3  Forest plot of risk ratio estimates of the Targeted Bidirectional EHR Transformer model with 95% CIs for the association of systolic 
blood pressure and the secondary outcomes. From the left, the six exposure groups are shown in first column. Number of events and total number 
of patients in each exposure group is shown in second column. The forest plot and corresponding risk ratio estimates are shown in the right-most 
column relative to the reference class, 120–129 mm Hg. The effect size is plotted on a logarithmic scale. For the reference category, there is no CI.
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concluding a J-shaped pattern.4 5 25 However, these observational 
studies are criticised for improperly dealing with manifestations 
of reverse causality and confounding. With cardiometabolic 
multimorbidity at baseline more prevalent in those with lower 
SBP than higher, additional variables capturing this poor baseline 
health and associated cardiovascular illnesses must be included 
for adjustment. Given an insufficient understanding of risk and 
protection in multimorbid patients currently, solely relying on 
expert selection of known confounders (eg, gender, age, BMI, 
known risk factors of CVD) exposes the modelling to issues of 
residual confounding.26 As a result, unadjusted confounding due 
to multimorbidity in lower SBP groups can result in the J-shaped 
pattern: an optimum exists such that SBP below and above is 
associated with higher cardiovascular risk.4 27

In our own implementation of conventional regression model-
ling, adjusting for predictors as previously defined in Byrd et al, 
the results captured this described J-shaped pattern and rejected 
the established log-linear relationship between SBP and risk of 
cardiovascular outcomes.3 4 Even the fully adjusted LR model 
with the expanded set of predictors resulted in a non-monotonic 
trend across analyses of both primary and secondary outcomes.

Implementing the DL approach for assessing the studied 
association directly confronted these modelling issues. By using 
minimally processed diagnoses and medications data in routine 
clinical EHR, our DL approach accounts for a breadth of risk 
factors potentially confounding the exposure-outcome rela-
tionship. In our cohort with COPD and cardiometabolic multi-
morbidity at baseline, in which traditional approaches failed to 
sufficiently capture confounding factors in observational data, 
our approach was appropriately implemented to model the asso-
ciation between SBP and risk of cardiovascular events.

The monotonic association concluded in this work raises 
important clinical questions for cardiovascular care. What is 
the optimal SBP in patients with COPD? Does this threshold 
differ from the recommendations for the general population 
(<120 mm Hg)? While guidelines for hypertension indeed 
endorse blood pressure lowering in patients with concomitant 
COPD and high blood pressure, the recommendations suggest a 
treatment target of <130 mm Hg (<140 mm Hg in the elderly).28 
Our results demonstrated an infimum of risk at SBP of <120 mm 
Hg—consistent with the established log-linear understanding of 
the association between SBP and cardiovascular risk.

Figure 4  Forest plot of risk ratio estimates of the Targeted Bidirectional EHR Transformer model with 95% CIs in sensitivity analyses. From the left, 
the specific sensitivity analysis is annotated and the six exposure groups are shown indented in first column. Number of events and total number 
of patients in each exposure group is shown in second column. The forest plot and corresponding risk ratio estimates are shown in the right-most 
column relative to the reference class, 120–129 mm Hg. The effect size is plotted on a logarithmic scale. For the reference category, there is no CI.
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Naturally, our investigation does not answer questions relating 
to antihypertensive treatment effects. Hence, while our study in 
isolation is insufficient for recommending revisions of hyper-
tension guidelines, our investigation sheds light on the aetiolog-
ical nature of SBP and CVD in those with COPD—imperative, 
especially since randomised evidence of blood pressure-lowering 
therapies in patients with COPD is unavailable and likely to 
remain unavailable in the near future. While (1) external vali-
dation of the studied association would be prudent and (2) 
in-depth investigations of the association between antihyper-
tensive and CVD (in at least the observational capacity) are 
needed to comprehensively capture all facets of the relationships 
between blood pressure, antihypertensives and CVD risk in 
patients with COPD, our investigation serves as one such source 
of well-adjusted evidence.

Strengths and limitations
First, in terms of data, the comprehensive information provided 
by CPRD is a strength of our research. The linkage capabili-
ties of CPRD allow the capture of rich health encounters (eg, 
diagnoses, medications, measurements, static attributes) from 
various sources including primary care, secondary care and 
mortality-based datasets. With access to rich EHR, our DL 
approach could better extract confounders, both known and 
latent in routine clinical data as shown in past investigations of 
SBP and CVD risk in high-risk patients.10 12 Second, with access 
to repeated SBP measurements specifically, we were able to 
derive a summary value (mean value of multiple SBP measure-
ments) limiting issues of measurement error.20 Third, we were 
able to capture many more patients than prior studies investi-
gating this association, and also, unlike previous studies of SBP 
and cardiovascular risk, we included older aged patients and 
those with cardiovascular multimorbidity at baseline.4 Exclusion 
from our study was limited, thereby allowing understanding of 
the association of SBP and cardiovascular outcomes in high-risk 
subgroups with COPD. Fourth, rich longitudinal data in CPRD 
afforded us the opportunity to follow patients for a median of 
3.9 years as opposed to the prior exploration of this associa-
tion in patients with COPD, which reported median follow-up 
of 1.9 years.4 With a longer follow-up period, potential biases 
in RR estimation due to issues of reverse causation are miti-
gated. Fifth, we explored various sensitivity analyses in order to 
understand the role of unforeseen biases (eg, reverse causality) 
and supplement the narrative of the main results. In terms of 
modelling, a strength of our work is the DL approach capable 
of extracting and adjusting for confounding factors in rich anno-
tated EHR.10 12 Additionally, we implemented two varieties of 
the conventional statistical approach with validated predictor 
sets allowing direct comparison with the DL approach.4 By using 
superior confounding adjustment methods, we demonstrated the 
utility of DL modelling ultimately rejecting the evidence of a 
J-shaped relationship.

In terms of limitations, while EHR data in CPRD have some 
degree of diagnostic recording error, past studies have validated 
the primary care, secondary care and mortality-based sources 
within the CPRD database for observational research.11 14 15 
Also, SBP variability is a concern; we have attempted to amelio-
rate issues of random measurement error by taking an average 
of repeat measurements over the course of 12 months following 
baseline as recommended by previous works.20 Furthermore, 
more accurate consideration of the outcome and censoring 
with time-to-event modelling is needed. Given the nascent stage 
of deep survival modelling for EHR, further methodological 

innovation is required to fuse DL-based causal models and 
survival framework modelling.29 Also, methods that can inter-
pret confounding capture conducted by T-BEHRT would be 
useful for fully characterising DL estimation processes. While 
importance of adjusted variables can be readily assessed in 
the conventional approach, auxiliary methods to extract and 
decompose the confounders captured by T-BEHRT into explicit 
medical history variables would lend insight into shared risk 
factors of blood pressure and CVD. In terms of adjustment, 
while overadjustment (collider variable adjustment and M-struc-
ture bias) is a theoretical concern, empirical research has shown 
that conditioning on all pre-exposure variables in similar types 
of EHR studies does not lead to biased estimates.30 Addition-
ally, we have attempted to further mitigate this potential issue 
by defining a clear baseline with adjustment specifically up to 
baseline. Lastly, as is true with all observational studies, residual 
confounding cannot be completely ruled out even with more 
complex confounding adjustment approaches (eg, T-BEHRT).

CONCLUSION
We found that patients with COPD in the lowest category of 
SBP of <120 mm Hg has the lowest risk of cardiovascular events 
during follow-up. Our findings capture a monotonic relation-
ship between SBP and risk of cardiovascular events in patients 
with COPD and were in line with the established clinical under-
standing of the monotonic relationship between SBP and cardio-
vascular risk in the general population.
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Supplementary Methods 

 

Study Design 

 

Supplementary Figure S1. Study design of the investigation of the association between systolic blood pressure 

(SBP) and cardiovascular outcomes in patients with chronic obstructive pulmonary disorder. Index date 

(baseline) for a given patient is the date of the first SBP measurement recorded between 1990 and 2009 and 

ages 55 and 90.  

 A visualisation of the study design can be found in Supplementary Figure S1. This visualisation 

demonstrates the index date, the exposure period where repeat measurements of systolic blood pressure (SBP) 

are averaged to serve as exposure status, and the follow-up period, which starts 12 months after index date. 

 

Introduction to deep learning and Bidirectional Electronic Health Records 

Transformer 

Deep learning (DL) modelling is a subclass of machine learning (ML), which is in turn a subclass of 

artificial intelligence (AI) modelling. DL is a more recent paradigm that utilises artificial neural networks to 

progressively extract more latent and richer features from input data for a given task.  

BEHRT, one such DL model, is a Transformer model that has indeed been shown in past works to 

better represent the complex multimodal EHR than previous DL models such as recurrent and convolutional 

neural networks in addition to conventional statistical models
 3–5

. The flexible BEHRT model allows for 

including multiple facets of complex EHR data: the encounter itself (e.g., a diagnosis), time information of the 

encounter (i.e., both age and calendar year), and other attributes such as visit information. While all of these 

sources of information might provide useful features for utilisation for adjustment in association estimation 

tasks or risk prediction task, this nuanced data is hard to represent in previous approaches. BEHRT’s flexible 
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architecture allows for encoding this complex arrangement of data, and additionally is able to demonstrate state-

of-the-art predictive performance on a host of tasks on EHR data
 3–5

.  

Targeted Bidirectional Electronic Health Records Transformer 

 We implemented the Targeted Bidirectional Electronic Health Records Transformer (T-BEHRT) for 

risk ratio (RR) estimation of the association between SBP and cardiovascular outcomes.  

 In order to include medical history variables in the T-BEHRT model, we conducted some processing of 

derived CPRD variables. First, the diagnostic records from primary care coded in the Read code format were 

mapped to the ICD-10 format for consistency with the secondary care coding format (ICD-10). This mapping 

process yielded a total of 1,497 codes 
1. Second, we mapped the medication codes in the CPRD “product code” 

format to 386 codes in the BNF coding format 
2
. Third, we extracted smoking status (current, former, never a 

smoker) of a particular patient as the last known status in the 12 months before baseline. Fourth, we extracted 

patient sex for incorporation as a static variable in the T-BEHRT modelling framework.  
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Supplementary Figure S2: T-BEHRT model architecture (A) and embedding design (B). (A) shows the static and 

longitudinal input, BEHRT feature extractor, the latent outputs for every clinical encounter (outputs T1 to TN+1) 

and the tasks for the models: (1) Masked EHR modelling (MEM), (2) propensity score prediction, (3) 

conditional outcome prediction (given exposure=0 or the reference group), (4) conditional outcome prediction 

(given exposure=1 or the intervention group). (B) shows the embedding structure. The embeddings include the 

static and longitudinal embedding structure. The diagnoses (e.g. D2, D8) and medications (e.g. M1) are fed into 

the model with the appropriate timestamp (age in months and calendar year) of recording. The embeddings for 

the encounter, age, and year are summed. The SEP element is a separator element used to inform the model that 

one visit has ended and another has started. The static attributes are similarly represented in high-dimensional 

embeddings and concatenated to the longitudinal data structure. In, sum the embedding structure incorporates 

static and longitudinal data inputs. EHR: electronic health records; SEP: Separator; T-BEHRT: Targeted 

BEHRT; MEM: Masked EHR Modelling 

The model combines three advances in DL modelling and semiparametric statistics. First, T-BEHRT 

utilises a modified BEHRT feature extractor architecture to model both static variables, canonically included in 

standard epidemiological approaches (e.g., sex, smoking status, etc) and longitudinal variables (e.g., 

diagnoses/medications) in one unified architecture (Supplementary Figure S2 A) 
3–5

. Each static variable is 

inputted as a continuous variable or categorical (or binary) variable. If categorical, all possible values of the 

variable are represented by a two-dimensional embedding matrix, with each value represented as a vector in this 

matrix
3
. Longitudinal clinical encounters – diagnoses made at primary/secondary care and medications 

prescribed – are represented by a similar matrix. Age and calendar year attributes of the event date for a 

particular diagnosis/prescription are also fed to the model via a similar embedding; in this way, the model can 

adjust for a confounder, for which the effect may vary across time (Supplementary Figure S2 B).  

Second, the model utilises unsupervised representation learning to better capture confounding elements 

latent in input EHR, not explicitly adjusted. The unsupervised framework, Masked EHR Modelling (MEM) is 

used to extract richer latent representations from both static and longitudinal data for propensity score 

prediction; the model can better capture pre-exposure variables associations with the exposure thereby better 

capture confounding elements as well 
3,6

. The unsupervised learning is conducted in tandem with the causal 

predictive framework. This unsupervised objective has been consistently shown to improve causal estimation 

performance – not just with the T-BEHRT architecture but with other architectures as well 
3
.  
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Third and lastly, semi-parametric “doubly-robust” estimators have found success in mitigating bias and 

demonstrating more accurate estimates of causal effect. T-BEHRT modelling is powerful when combined with 

doubly-robust estimation to further reduce bias. To be able to conduct the doubly-robust estimation, the T-

BEHRT DL neural first uses a one-layer neural network to predict propensity score (i.e., probability of being 

treated with a particular exposure) and next, outcome prediction is conducted with two-layer neural networks. 

After the DL components are used for prediction, propensity score and outcome estimates are utilised in the 

cross validated targeted maximum likelihood (doubly-robust) estimation (CV-TMLE) algorithm to update the 

risk estimates utilising the propensity score estimates 
7
. Trimming of propensity score greater than 0.97 and less 

than 0.03 was conducted before pursuing calculation of RR 
3
. 

 

Risk ratio estimation for T-BEHRT model 

 The SBP category of 120–129 mm Hg was considered as the reference exposure group in our study; 

RR was estimated in comparison to this reference category. For a given comparison to the reference group (e.g. 

150–159 mm Hg compared to the reference), the T-BEHRT model was first trained to predict exposure category 

(propensity score) and outcome with k-fold cross-validation (k=10) implemented for training and testing 
3
. Risk 

estimates and propensity score predictions across the 10 test sets were pooled, and by utilising “doubly-robust” 

post-hoc estimator, Cross Validated Targeted Maximum Likelihood Estimation (CV-TMLE), the risk estimates 

were further corrected for selection biases, and RR and 95% confidence intervals are derived 
7. The term “T-

BEHRT” and associated model in this paper refers to the estimation framework consisting of (1) estimating risk 

of outcome and propensity score with DL modelling and (2) updating initial estimates with CV-TMLE in order 

to estimate RR and 95% CI. 

 

Risk ratio estimation for logistic regression model 

Logistic regression modelling (LR) was used for the conventional approach in this work. The 

modelling utilised direct standardisation method for estimation of the RR 
8
. As an example, to estimate the 

effect of 150-159 mm Hg on cardiovascular outcomes with respect to the reference exposure, the trained LR 

model predicted risk with exposure for all patients set to the categorical variable representing 150-159 mm Hg 

and predicted risk with exposure similarly set to the reference group. The RR was derived as the ratio of the 

average of these two sets of predictions. For theoretical guarantees, we implemented k-fold cross-validation 

(k=10) for causal estimation 
9
. RR was calculated as the average of RR estimations on the 10 individual test 
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sets, and the 95% confidence interval (CI) was calculated via bootstrapping 
10

. Lastly, the crude RR was 

calculated as the ratio between the average empirical risk of outcome in a particular exposure group divided by 

the same in the reference exposure group.  

 

Implementation details 

The code for this work was implemented in the python coding language. The DL models was 

implemented using Pytorch – a DL framework validated on many past works in DL and EHR specifically 
11

. 

Two graphical processing units (NVIDIA Titan Xp) were used for DL model training and evaluation. 

Hyperparameters of the model (manually selected, non-trainable parameters of the model) are shown in 

Supplementary Table 1. More details on the DL modelling can be found in the original methods paper 
3
. 

Supplementary Table 1. T-BEHRT model hyperparameters 

Hyperparameter Attribute 

Hidden BEHRT size 150 

Intermediate BEHRT Layer size 108 

Hidden dropout probability 0.3 

Attention dropout probability 0.4 

Number of hidden layers (BEHRT) 5 

Hidden activation functions Exponential Linear Unit 

Initialiser range of parameters 0.02 

N (number of tokens/clinical encounters) 300 

Mini-batch size 128 
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 8 

.  

Supplementary Figure S4. Forest plot of risk ratio estimates of the crude and adjusted logistic regression (LR) 

models with 95% confidence intervals (CI) for association of systolic blood pressure and the primary composite 

outcome. From the left, the six exposure groups are shown in first column. Number of events and total number 

of patients in each exposure group is shown in second column. The forest plot and corresponding risk ratio 

estimates are shown in the right-most column relative to reference class, 120-129 mm Hg. The effect size is 

plotted on a logarithmic scale. For the reference category, there is no confidence interval. 
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 9 

 

Supplementary Figure S5. Forest plot of risk ratio estimates of the adjusted logistic regression (LR) model with 

extended predictor set with 95% confidence intervals (CI) for association of systolic blood pressure and (A) the 

primary outcome and (B) the secondary outcomes. From the left, the six exposure groups are shown in first 

column. Number of events and total number of patients in each exposure group is shown in second column. The 

forest plot and corresponding risk ratio estimates are shown in the right-most column relative to reference 

class, 120-129 mm Hg. The effect size is plotted on a logarithmic scale. For the reference category, there is no 

confidence interval. 
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Supplementary Figure S6. Forest plot of risk ratio estimates of the crude and adjusted logistic regression (LR) 

models with 95% confidence intervals (CI) for association of systolic blood pressure and the secondary 

outcomes. From the left, the six exposure groups are shown in first column. Number of events and total number 

of patients in each exposure group is shown in second column. The forest plot and corresponding risk ratio 
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estimates are shown in the right-most column relative to reference class, 120-129 mm Hg. The effect size is 

plotted on a logarithmic scale. For the reference category, there is no confidence interval. 
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