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Aims Deep learning has dominated predictive modelling across different fields, but in medicine it has been met with mixed 
reception. In clinical practice, simple, statistical models and risk scores continue to inform cardiovascular disease risk pre
dictions. This is due in part to the knowledge gap about how deep learning models perform in practice when they are 
subject to dynamic data shifts; a key criterion that common internal validation procedures do not address. We evaluated 
the performance of a novel deep learning model, BEHRT, under data shifts and compared it with several ML-based and 
established risk models.

Methods and 
results

Using linked electronic health records of 1.1 million patients across England aged at least 35 years between 1985 and 
2015, we replicated three established statistical models for predicting 5-year risk of incident heart failure, stroke, and 
coronary heart disease. The results were compared with a widely accepted machine learning model (random forests), 
and a novel deep learning model (BEHRT). In addition to internal validation, we investigated how data shifts affect model 
discrimination and calibration. To this end, we tested the models on cohorts from (i) distinct geographical regions; (ii) 
different periods. Using internal validation, the deep learning models substantially outperformed the best statistical mod
els by 6%, 8%, and 11% in heart failure, stroke, and coronary heart disease, respectively, in terms of the area under the 
receiver operating characteristic curve.

Conclusion The performance of all models declined as a result of data shifts; despite this, the deep learning models maintained the 
best performance in all risk prediction tasks. Updating the model with the latest information can improve discrimination 
but if the prior distribution changes, the model may remain miscalibrated.
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Graphical Abstract

Design and main results of the model evaluation in the presence of data shift. EHR, electronic health records; HES, hospital episode statistics; HF, heart 
failure; CHD, coronary heart disease; CPH, COX proportional hazard; ML, machine learning; DL, deep learning; RF, random forest.

Keywords Cardiovascular disease risk • Heart Failure • Stroke • Coronary heart disease • Predictive modelling • Data shifts

Translational perspective
Cardiovascular disease (CVD) risk models have a long tradition in clinical care. Despite rapid advances in modelling over the past decade and 
the increasing availability of longitudinal electronic health records, CVD risk models proposed in 1990s and 2000s are still routinely used 
across the world with minor changes. In line with the Transparent reporting of a multivariable prediction model for individual prognosis 
or diagnosis (TRIPOD) statement and using representative data from 3.05 million individuals in the UK, we performed a rigorous comparison 
of novel deep learning and machine learning models with conventional CVD risk models. The findings highlight the merits and shortcomings of 
these models in terms of predictive performance.

Introduction
Risk prediction models are important tools to guide decision-making 
in routine health care. They can help clinicians to identify at-risk pa
tients and initiate preventive measures. Today, most prediction mod
els in use, rely on (simple) statistical techniques with expert selected 
predictors. For example, QRISK3,1 Framingham,2 and ASSIGN3 are 
commonly used risk models for the prediction of cardiovascular 
events. These models largely assume a linear relationship between 
covariates and outcomes, and this assumption is shown to limit the 
predictive power and accuracy in some applications.4–6

Over the past decade, deep learning (DL) models have gained 
growing popularity due to their ability to learn high-level features 
that capture the complex interactions of input variables. DL models 

have delivered state-of-the-art predictive performance across differ
ent fields without the need for expert-guided feature engineering.4,7

Indeed, several previous studies demonstrated that simpler machine 
learning (ML) models could outperform statistical models and sug
gested their advantages in improving healthcare.8,9 However, several 
factors have hampered the adoption of more complex DL models 
for CVD risk assessment in healthcare.

The explainability of deep over-parametrized models remains an 
open question and an active area of research. However, a more fun
damental question has cast a shadow over the usability of these mod
els in clinical practice. Some have argued that beyond internal 
validations that are prone to being optimistic and are not represen
tative of the practical use cases of risk models, evidence of achieving 
higher performance using DL models is lacking. Other studies have 
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shown that simple statistical models can perform better or as well as 
ML models.10,11 These contradictory findings are partly because in 
the absence of benchmarking datasets, the data used in different 
studies—in terms of size and quality—may not always merit complex 
modelling approaches. More importantly, model evaluation methods 
and metrics vary across different studies. Lastly, DL models encom
pass a wide range of architectures and depending on the data the 
benefits of different architectures can vary significantly.7,12

The objective of this study is to compare the performance of a no
vel DL model, trained on large-scale, representative electronic health 
records (EHRs), with three widely used Cox proportional hazards 
(CPH) models for prediction of risk of cardiovascular disease 
(QRISK, Framingham, and ASSIGN). A more conventional ML model 
(random forest) was also included in the analysis as an additional 
comparator. As case studies, we investigated the prediction of 
major cardiovascular events [heart failure (HF), stroke, and coronary 
heart disease (CHD)] in the general population. Considering 
out-of-distribution dataset shift is an inherent problem that applies 
to all modelling approaches, to better assess these models’ general
ization power and robustness, in addition to internal validation, we 
devised a number of ‘external’ validations procedures. Specifically, 
we investigated model performance under data shifts on external co
horts (1) from different geographies, and (2) from different time 
periods.

Methods
Study design and participants
The Clinical Practice Research Datalink (CPRD)13 provides de-identified 
patient data collected from general practices (GP) across the UK. The 
primary care data can be linked to other health-related data such as 
the Hospital Episode Statistics (HES) Admitted Patient Care data and 
the death registration data from the Office for National Statistics.14 It 
is broadly representative of the UK population, and it is one of the 
most comprehensive EHR datasets. To create our study dataset, we 
selected a subset of patients, both men and women, aged at least 35 
years, registered with GP for at least two years, contributed to data 
between 01 January 1985 and 32 December 2015 and were linked to 
HES. Patients were excluded if they had no index of multiple deprivation 
(IMD), which is an area-based socioeconomic status indicator, with 
increasing level of deprivation with higher scores (Figure 1). 
We determined a baseline date for each patient by randomly 
selecting a date during the eligible record period. This approach can bet
ter capture the practice variability with a better spread of calendar time 
and age.11,15

This work mainly investigated the 5-year risk prediction of the inci
dence of three major cardiovascular events, namely HF, stroke, and 
CHD. To identify cases for each risk prediction task, for example HF, 
we filtered out all patients with prevalent HF. A patient was identified 
as HF (+) if diagnosed with HF from either GP and HES records or death 
registration within a 5-year interval after the baseline date. Moreover, a 
patient was identified as HF (−) if one had records for at least 5 years 
after the baseline and there was no HF identified during the 5-year inter
val. The rest of patients were considered as lost to follow-up before de
veloping HF by year 5 with uncertain outcome (i.e. censored patients), 
thus, were excluded from the cohort. We followed the identical proto
col to prepare the dataset for stroke or CHD risk prediction. The diag
nosis codes for HF, stroke, and CHD were adapted from the CALIBER 
code repository.16 In brief, HF was defined as a composite condition 

of congestive HF, left ventricular failure, cor pulmonale, cardiomyopathy, 
hypertensive heart disease with (congestive) HF, cardiac failure, and HF; 
stroke was defined as a composite condition of ischaemic stroke, transi
ent ischaemic attack, and stroke not otherwise specified; and CHD was 
defined as a composite condition of atherosclerotic heart disease, coron
ary or ischaemic heart disease, aborted myocardial infarction, or coron
ary artery disease.

Predictor variables
We used six sets of predictors (input variables to the predictive models) 
for risk prediction. Two of them were for QRISK and ASSIGN,1,3 re
spectively, and they were used for all three risk prediction tasks. As sug
gested by the previous research,2,17–19 Framingham model used three 
different sets of predictors for HF,17,18 stroke,19 and CHD2 risk predic
tion, respectively. Another set of predictors was used for training the DL 
models. Table 1 shows the complete list of predictors except for DL. 
Missing values were imputed using Multivariable imputation with chained 
equations20 for five times. More details about data missingness, predictor 
extraction, and data imputation can be found in the Supplementary 
Material online.

We did not explicitly select predictors for the DL model. The model 
was trained end-to-end on raw (or minimally processed) EHR for the risk 
prediction tasks without any imputation. We incorporated all diagnoses, 
medications, lab tests, and procedures available before baseline with 
3858, 390, 1439, and 679 distinct medical codes in each data category re
spectively (see Supplementary Material online).

Derivation of the models
This study considered seven models for each of the risk prediction tasks 
(Figure 1), including a DL model7 (i.e. BEHRT), three CPH models 
(QRISK3,1 Framingham,2,17–19 and ASSIGN3) from ‘Lifelines’,21 and three 
random forest models22 from ‘scikit-learn’23 that relied on predictors se
lected by QRISK3, Framingham, and ASSIGN, respectively. We referred 
to these three random forest models as RF (QRISK), RF (Framingham), 
and RF (ASSIGN) based on the selection of their predictors. We used 
RF instead of the survival RF in our work because the current software 
packages of survival RF cannot handle large data very well to our best 
knowledge. The Framingham family of CVD models has a different set 
of predictors for HF, Stroke, and CHD. This distinction is reflected in 
the naming of the models in the present study. On the contrary, 
QRISK and ASSIGN are used for general CVD prediction. In the present 
study we used the same set of predictors for the prediction of all three 
diseases. BEHRT is a recently proposed sequential DL model that uses 
Transformer24 and a self-attention mechanism24 to extract the temporal 
patterns within a sequence. It learns the health trajectory of patients by 
modelling the EHR in chronological order. This distinguishes BEHRT 
from the other models in the present study. Statistical models measure 
risk on the basis of the absence or presence of a disease with no or lim
ited interactions. BEHRT in addition to capturing complex interactions, 
incorporates in the prediction of risk the order in which medical events 
such as diagnoses and treatments were observed, the age at which an in
dividual has received a diagnosis and other medical events in a patient’s 
medical records (see Supplementary Material online).

For ML and DL models, we performed hyperparameter tuning by ran
domly searching a given parameter space for 30 iterations. For brevity, 
we only reported the model with the best results and the selected values 
for the parameters (see Supplementary Material online). Additionally, for 
clarification, all models (including QRISK, Framingham, and ASSIGN) 
were implemented, trained, and validated using the selected cohort. 
Also, no class imbalance correction was applied for model training.25
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Figure 1 Flow diagram of the cohort selection, modelling, and evaluation. Heart failure is used for demonstration of the seven models for com
parison, but the Stroke and coronary heart disease risk prediction follow the same protocol. The colour in predictor and modelling section repre
sents a path that flows from the cohort to a specific set of predictors and how the predictors are used by the models.
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Model evaluation and statistical analysis
We employed a range of model evaluation procedures to compare the 
performance of models beyond the narrowly defined internal validation 
procedures (Figure 1). In addition to a standard five-fold cross-validation 
(or ‘internal validation’), we investigated three ‘external validation’ ap
proaches. First, for the out of region validation, we followed the recom
mendations9 and chose different regions (i.e. strategic health authorities) 
for forming the training and validation datasets (i.e. regions in the valid
ation dataset, were not part of the training data). More specifically, for 
validation sets we selected three regions with different socioeconomic 
statuses9 (see Supplementary Material online) from north England that 
account for 23% of the total population. The remaining regions were 
used for training. We argue that geographically different patients with dif
ferent statistical characteristics are similar to using an external dataset 
with a certain level of data shift.9

Second, for the temporal (i.e. time-shift) validation, we expect that 
changes in demographics, care policy and practice over years to introduce 
data shifts.26 Therefore, we trained and validated models on cohorts from 
different years. More specifically, we randomly chose a baseline for each 
individual. All those with baseline years of 2000 and earlier were used 
for training models and those with baseline year between 2000 and 
2010 were used for validation (Figure 1). Additionally, by evaluating the 

model performance on patients from baseline year 1999–2000, we cre
ated an internal reference to compare with the model performance under 
temporal changes. Thus, this evaluation can provide a clear trend on how 
model performance changes for datasets without (i.e. internal reference) 
or with data shifts in terms of temporal variability. The baseline character
istics can be found in the Supplementary Material online.

In routine clinical settings, a risk prediction model can only be trained 
with the data in the past to predict an event in the future. Assume we 
want to use a risk model in year 2005; this means we need a model 
that has been trained and validated with data before 2005. To assess 
the models’ generalization power in settings similar to their typical use 
case, and over a period of time, our third external validation performed 
‘time-series cross-validation’.27 In this approach, we split the data into 
three time-windows, denoted as wtrain, wlabel, and wval. For example, we 
trained a model using patients with baseline years before 2000 (wtrain), 
left a 5-year gap (2000–2005) for labelling (wlabel), and validated (wval) 
on patients with baseline one year after the labelling window (2005– 
2006). The time-series cross-validation repeated the abovementioned 
process by moving wtrain and weval from 2000 to 2004, and 2006 to 
2010, respectively, with a one-year interval. That is, a total of five models 
trained on five different training sets (five time windows) and evaluated 
on five separate validation sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Summary of predictors

Predictor QRISK Framingham-HF Framingham-Stroke Framingham-CHD ASSIGN

Age * * * * *

Ethnicity *

Indices of multiple deprivations * *
Systolic blood pressure * * * * *

SD of systolic blood pressure *

Body mass index *
Total cholesterol/HDL ratio * *

Smoking status * * * *

Family history of CHD * *
Diabetes * * * *

Treated hypertension * * *

Rheumatoid arthritis * *
Atrial fibrillation * *

CKD (stage 3, 4, 5) *

Migraine *
Corticosteroid use *

Systemic lupus erythematosus *

Atypical antipsychotic drugs *
Severe mental illness *

HIV or AIDS *

Erectile dysfunction *
Sex * * *

CHD * *

Left ventricular hypertrophy *
Valve disease *

Heart rate *

Total cholesterol *
HDL *

CKD, chronic kidney disease; * represents predictors selected by each model.
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While our outcome was binary, instead of predicting positive or nega
tive, we predicted the probability of a patient that belongs to positive or 
negative. This allows us to measure the discrimination of models using 
area under the receiver operating characteristic curve (AUROC) and 
average precision (AP). The model calibration was assessed with the cali
bration curves.28 The DL and ML model can predict the estimated risk 
naturally within the binary classification framework. However, for the 
CPH survival models, we combined the regression coefficients as weight 
with the baseline survival function. It allowed us to estimate the risk for 
each year of follow-up, and we only focused on the 5-year risk estima
tion.1 This allows us to calculate the AUROC, AP, and calibration curves 
that are directly comparable with the binary classification models. 
Additionally, the precision related metrics (e.g. AP) were not considered 
for evaluation in the presence of data shifts as they are sensitive to the 
changes of event rate. Naturally, the event rate can change across time 
for all outcomes; therefore, these metrics are not comparable in this 
case.

To provide additional information about how the time shift influences 
the risk prediction, we analyzed the incidence rate of HF, stroke, and 
CHD across different years on the selected cohort. Furthermore, we 
used population stability index (SPI) to identify the covariates distribution 
shift29 between the training and validation dataset.

Results

Study population
Overall, 4 528 376 patients contributed to CPRD between 01 
January 1985 and 31 December 2015 can be linked to HES and 
had IMD recorded. Among those, 3 902 516 patients were regis
tered with the general practices for at least two years. With the in
clusion of patient aged at least 35, we identified a cohort with 3 052 
290 patients. Additionally, we filtered out patients with prior preva
lent HF, stroke, and CHD before the baseline date for the predic
tion of incident HF, incident stroke, and incident CHD, respectively. 
This led to 3 009 580, 2 972 045, and 2 915 645 patients accordingly 
for the risk prediction tasks. With the exclusion of censored pa
tients, we identified 954 983, 983 086, and 1 003 554 patients for 
HF, stroke, and CHD datasets, respectively, which were substan
tially smaller than the overall cohort. Due to the large overlap of 
cohorts across three risk prediction tasks, we summarized the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Baseline characteristics of risk prediction 
cohorts

Predictor Cohort

No. of patients 1 096 275
No. of patients (% of positive cases) for HF cohort 954 983 (3.3)

No. of patients (% of positive cases) for Stroke 

cohort

983 086 (6.7)

No. of patients (% of positive cases) for CHD 

cohort

1 003 554 (10.3)

Sex, n (%)
Male 534 657 (48.7)

Female 561 618 (51.2)

Age, mean (SD) 58.0 (15.3)
IMD score, mean (SD) 2.7 (1.4)

Family history of CHD, n (%) 341 042 (31.1)

BMI, mean (SD) 27.6 (3.2)
Strategic health authority (region), n (%)

North East 27 195 (2.5)

North West 175 416 (16.0)
Yorkshire and the Humber 54 655 (5.0)

East Midlands 38 242 (3.5)

West Midlands 137 824 (12.6)
East of England 134 314 (12.3)

South West 130 170 (11.9)

South Central 136 189 (12.4)
London 126 175 (11.5)

South East Coast 136 047 (12.4)

Ethnicity, n (%)
Unknown 683 961 (62.4)

White 399 533 (36.4)

Other Asian 1016 (0.1)
Pakistani 1237 (0.1)

Indian 3070 (0.3)

Other 3162 (0.3)
Caribbean 1659 (0.2)

Mixed 790 (0.1)

Bangladeshi 338 (0.0)
Chinese 656 (0.1)

Black African 853 (0.1)

Smoking status, n (%)
Not recorded 776 927 (70.9)

Non-smoker 154 991 (14.1)

Ex-smoker 106 512 (9.7)
Light smoker (<10 cigarettes/day) 15 576 (1.4)

Moderate smoker (10–20 cigarettes/day) 23 269 (2.1)

Heavy smoker (>20 cigarettes/day) 19 000 (1.7)
Clinical values

Systolic blood pressure, mean (SD) 135.3 (13.0)

Cholesterol/HDL 3.99 (0.67)
Comorbidity, n (%)

Diabetes 38 972 (3.6)

Rheumatoid arthritis 7 507 (0.7)
Atrial fibrillation 34 137 (3.1)

Continued 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Continued  

Predictor Cohort

Chronic kidney disease 6727 (0.6)
Migraine 34 789 (3.2)

Severe mental illness 6113 (0.5)

Systemic lupus erythematosus 947 (0.1)
HIV or AIDS 1755 (0.2)

Erectile dysfunction 27 885 (2.5)

Prescribed medication, n (%)
Treated hypertension 233 056 (21.3)

Antipsychotic 5778 (0.5)

Corticosteroid 44 388 (4.0)

IMD, index of multiple deprivation; SD, standard deviation.
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baseline characteristics of the selected cohorts after data imput
ation together to simplify the presentation, and they are shown 
in Table 2.

Internal validation
Table 3 shows the model performance of the statistical, ML, and DL 
models for HF, stroke, and CHD risk prediction. The BEHRT models 
substantially outperformed the other ML and statistical models for all 
risk prediction tasks, achieving AUROC 0.954 (95% confidence inter
vals: 0.950–0.958), 0.957 (0.955–0.959), and 0.951 (0.949–0.053); AP 
0.801 (0.781–0.821), 0.876 (0.865–0.887), and 0.897 (0.884–0.910) 
for HF, stroke, and CHD risk prediction, respectively. 
Furthermore, ML models (i.e. random forest) showed similar or 
slightly better performance than the statistical models with the 
same predictors. Figure 2 also shows that BEHRT models in general 
have better calibration performance than the other models, especial
ly for the high-risk predictions, in all tasks.

External validation in regions
The AUROC values validated on the external cohort with patients 
from the non-random selected regions are reported in Table 4. All 
models showed a slight decline in AUROC compared to the internal 
validation, and BEHRT models generally showed worse degradations 
than the other ML and statistical models. On average, the decrease in 
AUROC was less than 1.5% for both ML and statistical models and 
around 3% for the BEHRT models. Yet, the BEHRT models still 
achieved the best performance for all risk prediction tasks.

Impact of temporal data shift
Figure 3A shows the AUROC of all models when predicting the out
come for patients with external baseline. In general, all models suf
fered a performance decline under temporal data shift, and the 
AUROC values from all models decreased as the gap between the 

reference (i.e. 1999–2000) and the baseline of the validated cohort 
increased. Noticeably, HF and stroke had worse decline compared 
to CHD. Furthermore, there was no substantial difference between 
statistical models (i.e. Framingham, QRISK, and ASSIGN) and the ML 
models in terms of the external performance. The QRISK model in 
general has the best performance among the statistical models. 
Additionally, we see the BEHRT models and the ML models have a 
more considerable decline between internal (i.e. 1999–2000) and ex
ternal (i.e. 2000–2010) performance. Additionally, Figure 3B shows 
the calibration curve of models under temporal data shift. The result 
shows that the temporal data shift can negatively affect the calibra
tion of models. These negative effects are more pronounced in the 
calibration of the HF risk prediction models relative to stroke and 
CHD. However, BEHRT models still achieved the best calibration 
among all models for all three risk prediction tasks. This was followed 
by QRISK. The two models substantially outperformed the others, 
especially for CHD risk prediction. An important difference between 
the BEHRT and QRISK models pertains their performance in the 
high-risk region of the calibration curve. The QRISK models have 
relatively poor calibration in this region, especially under temporal 
data shift.

Data shifts are commonly classified into three categories: covari
ate shift (i.e. distribution shift in the covariates), prior probability shift 
(i.e. distribution shift in the outcome), and concept shift (i.e. the 
change of relation between covariates and the outcome).30 We spe
cifically investigated the prior probability shift and covariate shift as 
shown in Figure 4. Figure 4A shows the incidence rate of HF substan
tially changes across different year (prior probability shifts), but it is 
not the case for CHD and stroke. Therefore, the prior probability 
shifts can be a potential reason that causes the calibration shift in 
HF as shown in Figure 3B (i.e. HF had severe calibration shift com
pared to stroke and CHD). Figure 4B shows the covariate shifts in 
general are not substantial (i.e. PSI < 0.1) for all three diseases, except 
systolic blood pressure and smoking status. Considering the 
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Table 3 Mean and 95% confidence interval of AUROC and AP from five-fold internal cross-validation

Models AUROC (95% confidence interval)

HF Stroke CHD

BEHRT 0.954 (±0.004) 0.957 (±0.002) 0.951 (0.002)

QRISK3 0.895 (±0.002) 0.874 (±0.005) 0.838 (±0.005)
RF (QRISK) 0.897 (±0.005) 0.877 (±0.005) 0.850 (±0.003)

ASSIGN 0.885 (±0.002) 0.85±8 (±0.002) 0.829 (±0.001)

RF (ASSIGN) 0.884 (±0.005) 0.859 (±0.003) 0.833 (±0.002)
Framingham 0.883 (±0.004) 0.869 (±0.005) 0.831 (±0.005)

RF (Framingham) 0.884 (±0.002) 0.868 (±0.004) 0.836 (±0.003)

AP (95% confidence interval)
BEHRT 0.801 (±0.020) 0.876 (±0.011) 0.897 (±0.013)

QRISK3 0.270 (±0.002) 0.435 (±0.007) 0.463 (±0.002)

RF (QRISK) 0.313 (±0.031) 0.471 (±0.008) 0.487 (±0.006)
ASSIGN 0.230 (±0.006) 0.360 (±0.004) 0.386 (±0.005)

RF (ASSIGN) 0.278 (±0.007) 0.368 (±0.008) 0.398 (±0.008)

Framingham 0.270 (±0.002) 0.451 (±0.007) 0.431 (±0.007)
RF (Framingham) 0.302 (±0.016) 0.452 (±0.007) 0.442 (±0.006)
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performance decline as shown in Figure 3A, the concept shift can po
tentially play an important role in temporal data shift, and it suggests 
that the relation between covariates and the outcome can change 
over time.

Time-series cross-validation
Figure 5 shows the AUROC is relatively stable with less than 2% 
changes for all risk prediction tasks across different time, therefore, 
suggesting that all models benefit from using updated information 
to prevent performance decline in AUROC. However, this has neg
ligible impact on the calibration curve. The calibration curve of the 
models for CHD risk prediction improves slightly more than HF. 
This is partially because using the updated information can mitigate 
concept shift (i.e. relation between the covariates and the out
come), but not the prior probability shift (i.e. distribution shift in 
the outcome). Therefore, the result suggests that updating model 
only improves the calibration when the prior probability shift is 
not severe.

Discussion
Previous studies have applied ML methods to predict major cardio
vascular events and reported comparisons with the established 

statistical models.11,31,32 However, the findings were largely based 
on internal validation and the generalizability of different models 
on the external cohorts were not addressed.8,33,34 Moreover, des
pite the importance of DL models and continued advances in this 
subfield of artificial intelligence, evidence of their relative benefits 
was scarce or limited to simple multi-layer perceptron net
works.11,34,35 There is a gap in knowledge about the benefits of high- 
performance DL models that can model temporal patterns in EHRs 
relative to existing CVD risk models. To fill the gap and test the gen
eralizability of major statistical, ML, and DL models, we conducted 
comprehensive validation using procedures that are reflective of 
model performance under data shifts as well as internal validation 
with random train-test split.

We show that in the presence of large cohorts with comprehen
sive medical information, DL models outperform both convention
al ML and linear statistical models in the prediction of HF, CHD, and 
stroke. This is to be expected; a sequential DL model maps the en
tire history of individuals to risk profiles whereas ML and statistical 
models rely on limited, expert-selected predictors and are oblivious 
to the temporal dimension of medical events. However, we en
courage future work to replicate our work with potentially more 
advanced statistical and ML models. Our findings also corroborate 
similar studies that report no or minor differences between ML 
models and statistical models.11,34 Combined these findings under
line that additional functional complexity, as seen in RF models 
compared to statistical models, has a minor effect on CVD risk pre
dictions. Some recent studies claimed that the minimal perform
ance gain in the ML models (i.e. RF) is due to the limited access 
to the EHR and those models can benefit from having more com
prehensive features.36 However, even with the presence of the en
tire EHR, ML models still have to rely on the expert knowledge for 
predictor selection, which is still the main obstacle to further im
prove the performance. On the contrary, incorporating the tem
poral dimension of medical events and capturing the entire 
trajectory of patients, as seen in DL compared to ML and statistical, 
leads to major improvements.

The choice of model validation procedures distinguishes our 
study from others. Most of the available literature use randomly se
lected train-test sets for model validation,31,37 but this approach 
does not reflect the performance of models under data shifts, 
therefore it could lead to optimistic measures of performance. 

Figure 2 Mean and 95% confidence interval of calibration curve from five-fold internal cross validation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Externally validated model performance on 
a cohort with patients from the non-random selected 
regions

Models AUROC (absolute decline compared to the 
internal performance)

HF Stroke CHD

BEHRT 0.909 (−0.044) 0.932 (−0.025) 0.929 (−0.022)
QRISK3 0.883 (−0.012) 0.865 (−0.009) 0.830 (−0.008)

RF (QRISK) 0.883 (−0.014) 0.866 (−0.011) 0.840 (−0.010)

ASSIGN 0.873 (−0.012) 0.852 (−0.003) 0.823 (−0.006)
RF (ASSIGN) 0.874 (−0.010) 0.853 (−0.006) 0.827 (−0.006)

Framingham 0.871 (−0.012) 0.862 (−0.007) 0.821 (−0.010)

RF (Framingham) 0.873 (−0.011) 0.855 (−0.013) 0.826 (−0.010)
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Figure 3 Model performance validated under temporal data shift. (A) Validation of discrimination. (B) Validation of calibration. All models were 
trained on patients who had baseline before 2000 and validated on patients who had baseline between 2000 and 2010 with 1-year interval. The 
internally validated AUROC (1999-2000) is provided for comparison in (A); and the diagonal line in (B) is the reference calibration curve. 
Colours in (A) represent the models for validation and the colours in (B) represent the year of baseline for validation. (A) Shows all models suffer 
performance decline under temporal data shifts. This is represented as AUROC values decrease as the gap between the reference (i.e. 1999–2000) 
and the baseline of the validated cohort increases. Similarly, as the gap increases, the notable deviations of the calibration curve under temporal shifts 
for some models in (B) show they are more prone to the detrimental effects of data shifts.
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Figure 4 Analysis of data shift in the covariates and the outcome. (A) Temporal trends of incidence rate presented with fitted local polynomial 
regression lines with 95% confidence interval. The presented period covers the 95% patients’ baseline in the selected cohort. (B) Population stability 
index of predictors between training and temporal validation set (predictors with population stability index > 0.001 are presented). The colours in 
both (A) and (B) represent the diseases.
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Figure 5 Area under the receiver operating characteristic curve and calibration curve using time series cross-validation. (A–E) represent experi
ments with wtrain from 2000 to 2004 and weval from 2006 to 2010, respectively (Figure 1).
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We evaluated the models under data shifts and showed that the 
performance of all models declined compared to validation with 
random train-test split. Although the DL model maintained the 
best performance, it had the largest performance decline compared 
to the statistical models when the test set was from a distinct re
gion. This is because deep learning models can learn in-distribution 
associations very well, which however can lead to performance 
degradation when target population is mismatched (e.g. 
out-of-distribution datasets and datasets in the presence of data 
shifts).38 This should not be interpreted as overfitting; an overfitted 
model would not work well even for the in-distribution population, 
which is not the case in our experiment. Therefore, we conclude 
that data shifts can risk the generalizability of models, however, it 
does not necessarily link to overfitting. Similarly, the accuracy of 
all models declined as the time gap widened between the training 
cohort and validation cohort, especially for HF and stroke risk pre
diction. We showed that this can be remedied by regularly updating 
the model. Almost all models retained performance across differ
ent periods when updated every year. Lastly, our results suggest 
the calibration of models are generally sensitive to temporal 
changes. Models pertaining to HF risk prediction were subject to 
more severe calibration shift than the stroke and CHD. The DL 
models still achieved the best calibration; followed by the QRISK 
models, they substantially outperformed others. Our results also 
show that the calibration shift can potentially link to the prior prob
ability shift: the bigger the prior probability shift, the larger the cali
bration shift. Model updating can only mitigate the concept shift but 
not the prior probability shift, therefore, its usefulness in alleviating 
the calibration shift is limited.

The present study also has several limitations. We focused on the 
risk of CHD, HF, and stroke. As such, the conclusions may not gen
eralize to other diseases. Additionally, more hyperparameter search
ing for the models could have been considered, even though the 
reported models have achieved reasonable performance and lead 
to reasonable analyses. Another limitation is that censored patients 
were excluded from the analysis. Despite of the importance of sur
vival framework in risk prediction, most of the DL models remained 
as binary classification model, thus, unable to handle the censored pa
tients. To this end, some of the commonly used approaches are (i) 
discarding those patients and (ii) considering them as event free.39

The latter can substantially underestimate the risk in classification 
models but discarding censored patients will lead both survival and 
binary classification models to a similar risk prediction task and pro
duce a more comparable result.11 Although this can yield a less rep
resentative cohort, the results are still valid in terms of model 
comparison. Our future work will explore the impact of survival 
framework vs. binary classification framework on risk prediction 
and the benefit of transforming DL binary classification models to 
DL survival models.

Improvement of CVD risk assessment in clinical care translates into 
better informed care and more timely interventions.40,41 With 
the growing availability of EHRs, this study supports the great 
potential of DL models for use in routine care and clinical 
management software to guide decision-making and regular system 
updating. For reproducibility, the code for all models and model 
evaluation strategies can be found in: github.com/deepmedicine/ 
CVDRiskDistributionShift.
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