10 research outputs found

    Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain

    Get PDF
    The common liver fluke Fasciola hepatica causes an increasing burden on human and animal health, partly because of the spread of drug-resistant isolates. As a consequence, there is considerable interest in developing new drugs to combat liver fluke infections. A group of potential targets is a family of calcium-binding proteins which combine an N-terminal domain with two EF-hand motifs and a C-terminal domain with predicted similarity to dynein light chains (DLC-like domain)

    Altered adipocyte differentiation and unbalanced autophagy in type 2 Familial Partial Lipodystrophy: an in vitro and in vivo study of adipose tissue browning

    Get PDF
    Type-2 Familial Partial Lipodystrophy is caused by LMNA mutations. Patients gradually lose subcutaneous fat from the limbs, while they accumulate adipose tissue in the face and neck. Several studies have demonstrated that autophagy is involved in the regulation of adipocyte differentiation and the maintenance of the balance between white and brown adipose tissue. We identified deregulation of autophagy in laminopathic preadipocytes before induction of differentiation. Moreover, in differentiating white adipocyte precursors, we observed impairment of large lipid droplet formation, altered regulation of adipose tissue genes, and expression of the brown adipose tissue marker UCP1. Conversely, in lipodystrophic brown adipocyte precursors induced to differentiate, we noticed activation of autophagy, formation of enlarged lipid droplets typical of white adipocytes, and dysregulation of brown adipose tissue genes. In agreement with these in vitro results indicating conversion of FPLD2 brown preadipocytes toward the white lineage, adipose tissue from FPLD2 patient neck, an area of brown adipogenesis, showed a white phenotype reminiscent of its brown origin. Moreover, in vivo morpho-functional evaluation of fat depots in the neck area of three FPLD2 patients by PET/CT analysis with cold stimulation showed the absence of brown adipose tissue activity. These findings highlight a new pathogenetic mechanism leading to improper fat distribution in lamin A-linked lipodystrophies and show that both impaired white adipocyte turnover and failure of adipose tissue browning contribute to disease.We thank FPLD2 patients for donating biological samples. We thank the Italian Network for Laminopathies and the European Consortium of Lipodystrophies (ECLip) for support and helpful discussion. We thank Aurelio Valmori for the technical support. The studies were supported by Rizzoli Orthopedic Institute “5 per mille” 2014 project to MC, AIProSaB project 2016 and Fondazione Del Monte di Bologna e Ravenna grant 2015–2016 “New pharmacological approaches in bone laminopathies based on the use of antibodies neutralizing TGF beta 2” to GL. GL is also supported by PRIN MIUR project 2015FBNB5Y.S

    Electrospinning of poly(lactic acid)/ polyhedral oligomeric silsesquioxane nanocomposites and their potential in chondrogenic tissue regeneration Electrospinning of poly(lactic acid)/polyhedral oligomeric silsesquioxane nanocomposites and their potential

    No full text
    The study was conducted to evaluate the cytocompatibility and hydrolytic degradability of the new poly(lactic acid)/polyethylene glycol-polyhedral oligomeric silsesquioxane (peg-POSS/PLLA) nanocomposite as potential material for cartilage regeneration. PLLA scaffolds containing 0 to 5% of peg-POSS were fabricated by electrospinning. Human mesenchymal stem cells (hMSC's) were cultured in vitro to evaluate the cytocompatibility of the new nanocomposite material. Hydrolytic degradation studies were also carried out to analyze the mass loss rate of the nanocomposites through time. The addition of the peg-POSS to the PLLA did not affect the processability of the nanocomposite by electrospinning. It was also observed that peg-POSS did not show any relevant change in fibers morphology, concluding that it was well dispersed. However, addition of peg-POSS caused noticeable decrease in mean fiber diameter, which made the specific surface area of the scaffold to rise. hMSC's were able to attach, to proliferate, and to differentiate into chondrocytes in a similar way onto the different types of electrospun peg-POSS/PLLA and pure PLLA scaffolds, showing that the peg-POSS as nano-additive does not exhibit any cytotoxicity. The hydrolytic degradation rate of the material was lower when peg-POSS was added, showing a higher durability of the nanocomposites through time. Results demonstrate that the addition of peg-POSS to the PLLA scaffolds does not affect its cytocompatibility to obtain hyaline cartilage from hMSC's
    corecore