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Abstract The common liver fluke Fasciola hepatica causes an increasing burden on human and animal 25 

health, partly because of the spread of drug resistant isolates. As a consequence there is considerable interest in 26 

developing new drugs to combat liver fluke infections. A group of potential targets is a family of calcium 27 

binding proteins which combine an N-terminal domain with two EF-hand motifs and a C-terminal domain with 28 

predicted similarity to dynein light chains (DLC-like domain). The function of these proteins is unknown, 29 

although in several species they have been localised to the tegument, an important structure at the host-parasite 30 

interface. Here, we report the x-ray crystal structure of the DLC-like domain of FhCaBP2 (Fasciola hepatica 31 

calcium binding protein 2), solved using single-wavelength anomalous diffraction and refined at 2.3 Å 32 

resolution in two different crystal forms. The FhCaBP2 DLC-like domain has a structure similar to other DLC 33 

domains, with an anti-parallel β-sheet packed against an α-helical hairpin. Like other DLC domains, it dimerizes 34 

through its 2-strand, which extends in an arch and forms the fifth strand in an extended β-sheet of the other 35 

monomer. The structure provides molecular details of the dimerization of FhCaBP2, the first example from this 36 

family of parasite proteins. 37 

 38 

Keywords Liver fluke · Calcium-Binding Protein · Dynein Light Chain · Crystal Structure · Helminth 39 

Protein 40 
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Introduction 42 

Parasitic infections from worms of the class Trematoda are causing an increasing burden on human and animal 43 

health. For example, it is estimated that several million humans are infected with the common liver fluke 44 

Fasciola hepatica – and this zoonotic infection is classed by WHO as a neglected tropical disease (Robinson 45 

and Dalton 2009). Globally, the impact of F. hepatica infections of farm animals is estimated to result in several 46 

billions of dollars of agricultural losses per annum (Boray 1994; Schweizer et al. 2005). This increasing burden 47 

results partly because of the spread of drug resistant isolates of liver flukes. Resistance to triclabendazole, a 48 

generally safe and effective treatment for liver fluke infections, is now widespread in flukes which infect farm 49 

animals and the first incidences of humans infected with resistant flukes has also been reported (Cabada et al. 50 

2016; Gil et al. 2014; Winkelhagen et al. 2012). As a consequence, there is considerable interest in developing 51 

new drugs to combat liver fluke, and other trematode, infections. Much of this interest focuses on the 52 

identification of possible novel targets from these organisms. Proteins which are unique to trematodes, and not 53 

present in the host, are particularly attractive, since antagonism of these molecules is less likely to have 54 

detrimental effects on the host. 55 

 One such group of potential targets is a family of calcium binding proteins which combine an N-56 

terminal domain with two EF-hand motifs and a C-terminal domain with predicted similarity to dynein light 57 

chains (DLC-like domain) (Russell and Timson 2014; Thomas and Timson 2016). This combination of domains 58 

is unique: no mammalian proteins with EF-hand and DLC-like domains in the same protein are known. The 59 

function of these proteins is unknown, and it is not known if the proteins are essential for infection or survival of 60 

the parasite (knock-out or RNAi studies on these proteins have not been reported). One family member 61 

(SmTAL3/Sm20.8 from Schistosoma mansoni) has been shown to form part of a high molecular mass protein 62 

complex together with dynein light chain; therefore, it has been postulated that its role may be to link calcium 63 

signalling with microtubule regulation (Hoffmann and Strand 1997). However, it should be noted that SmTAL3 64 

does not bind calcium ions, although other family members do (Thomas et al. 2015). In several species the 65 

family members have been localised to the tegument, suggesting a potential role in the regulation of this 66 

important structure at the host-parasite interface (Havercroft et al. 1990; Huang et al. 2007; Jeffs et al. 1991; 67 

Kim et al. 2012; Mohamed et al. 1998; Subpipattana et al. 2012; Vichasri-Grams et al. 2006; Xu et al. 2014; 68 

Zhang et al. 2012). In Schistosoma spp, there are typically large numbers of different family members 69 

expressed. For example, S. mansoni has at least 13 different members and several of these have been shown to 70 

illicit allergen-like IgE immune responses (Fitzsimmons et al. 2012). Consequently, these proteins are also 71 
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considered as possible vaccines as well as drug targets (Fitzsimmons et al. 2007; Fitzsimmons et al. 2004; 72 

Zhang et al. 2012). In F. hepatica, there are at least four family members (FH22, FhCaBP2, FhCaBP3 and 73 

FhCaBP4), with distinct biochemical properties (Banford et al. 2013; Orr et al. 2012; Ruiz de Eguino et al. 74 

1999; Thomas and Timson 2015). Similarly, the S. mansoni tegumental allergen (TAL) proteins that have been 75 

characterised biochemically show different drug and ion binding properties (Thomas et al. 2015). This suggests 76 

that each protein may have a subtly different function in the organism (Russell and Timson 2014; Thomas and 77 

Timson 2016). 78 

 A major barrier in understanding the biology of these proteins and in their possible development as 79 

vaccines or as drug targets is a lack of experimental, high-resolution structural data. To date, a number of 80 

molecular models have been reported but, like all models, these are highly reliant on the template structures 81 

(Banford et al. 2013; Orr et al. 2012; Thomas et al. 2015; Thomas and Timson 2015). Crystallization, but not 82 

structure solution, of the DLC-like domain of S. mansoni TAL2 (SmTAL2, Sm21.7) has also been reported 83 

(Costa et al. 2014). Here, we report the crystallographic structure of the DLC-like domain of FhCaBP2 84 

(UniProt: A0A0B5GUS3). 85 

 86 

Materials and Methods 87 

Purification and crystallisation of FhCaBP2 88 

Recombinant hexahistidine-tagged FhCaBP2 was expressed in Escherichia coli HMS174(DE3) and initial 89 

purification carried out using cobalt affinity resin as previously described (Thomas and Timson 2015). Further 90 

purification was conducted by anion-exchange chromatography (Resource Q6 column, GE-Healthcare 91 

Biosciences, Uppsala, Sweden), after dialysing the protein against 10 mM Tris-HCl pH 8.5, 1 mM dithiothreitol. 92 

The protein was eluted in the same buffer with a linear gradient of 0-0.65 M sodium chloride, and eluted in two 93 

adjacent peaks around 0.3 M. It is not clear what the difference is between the two peaks, because on SDS-94 

PAGE the same band is observed. Fractions containing pure protein from each peak were pooled separately and 95 

concentrated up to 16 mg/ml using an Amicon Ultra concentrator with a molecular weight cut-off of 10 kDa 96 

(Millipore, Billerica MA, USA). Three washes with 10 ml of 10 mM Tris-HCl pH 8.5, 50 mM sodium chloride 97 

were applied. The samples were stored at 4 °C prior to crystallization trials. 98 

 FhCaBP2 protein was crystallized using the sitting drop vapour diffusion method (MRC 2-well Swissci 99 

crystallization plates, Molecular Dimensions, Newmarket, UK), adding 50 l of precipitant solution to the 100 

reservoir wells. To form the drops, protein solution (0.2 l) was mixed with 0.2 l of the respective reservoir 101 
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solution (Genesis RSP 150 workstation; Tecan, Männedorf, Switzerland). Plates were incubated at 21 ºC. After 102 

two months of incubation, a crystal was obtained in each of two drops, one in the presence of 20 % (w/v) PEG 103 

3350 and 0.2 M sodium tartrate and one with the same precipitant and 0.2 M potassium citrate. To generate the 104 

heavy atom derivative crystal, a few grains of solid methylmercury chloride were added to the reservoir of a 105 

crystal grown in the presence of sodium tartrate. The drop was equilibrated overnight with the reservoir and 2 l 106 

of reservoir solution were then added to the drop and incubated for about 5 min. The native crystal and 107 

derivative crystal were harvested with a Litholoop (Molecular Dimensions, Newmarket, UK) and flash-cooled 108 

in liquid nitrogen without cryo-protection. 109 

 Six-histidine-tagged recombinant C-terminal domain (residues 99-189) was also expressed in E. coli as 110 

previously described (Thomas and Timson 2015). It was purified using the same protocol as described above for 111 

the full-length protein, in this case a single peak was observed after anion exchange chromatography, eluting at 112 

around 0.15 M sodium chloride. Crystallization of C-terminal domain protein was performed in the same 113 

manner as for the full-length protein, crystals were obtained within two weeks from the condition containing 20 114 

% (w/v) PEG 3350 and 0.2 M sodium tartrate. Crystals were harvested as above. 115 

 116 

X-ray crystallography data collection and structure solution 117 

Crystallographic data were collected from a methylmercury chloride derivative crystal at the BL13-XALOC 118 

beamline of the ALBA synchrotron (Juanhuix et al. 2014), using a wavelength at which significant anomalous 119 

signal from the added mercury atoms was expected (1.0056 Å). Crystallographic data were integrated using 120 

MOSFLM (Battye et al. 2011) and further processed using POINTLESS, SCALA and TRUNCATE (Evans 121 

2011) from the CCP4-suite (Winn et al. 2011) to obtain structure factor amplitudes. Structure solution was done 122 

using AUTOSHARP (Vonrhein et al. 2007), which employs SHELX for heavy atom substructure determination 123 

(Sheldrick 2010), SHARP for phase determination (de La Fortelle and Bricogne 1997), SOLOMON for solvent 124 

flattening (Abrahams and Leslie 1996) and ARPWARP for automated model building (Langer et al. 2008). The 125 

auto-traced model was completed using COOT (Emsley et al. 2010) and refined using REFMAC5 (Murshudov 126 

et al. 2011) (10% of reflections were selected for calculation of Rfree (Brunger 1993)). For structure solution of 127 

the non-derivatised C-terminal domain, data was also collected at BL13-XALOC. Structure solution by 128 

molecular replacement was performed using PHASER (McCoy et al. 2007), after increasing the number of 129 

allowed C-α clashes to 20%. The model was completed using COOT and refined using REFMAC5 as before. 130 

Validation was done with MOLPROBITY (Chen et al. 2010). Structure comparisons, including r.m.s.d. and Z-131 
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score calculations, were performed using the DALI server (Holm and Rosenstrom 2010). Figures were made 132 

using PyMol (The PyMol Molecular Graphics System, Version 1.5.0.4. Schrödinger, LLC). Protein assembly 133 

parameters were calculated using PISA (Krissinel and Henrick 2007) and the PIC server (Tina et al. 2007). Data 134 

collection, phasing and refinement parameters are shown in Table 1. 135 

 136 

Results and Discussion 137 

Structure of the DLC-like domain of FhCaBP2 138 

In initial experiments, we attempted to crystallise full length FhCaBP2 (residues 1-189). This resulted in the 139 

formation of single prism-shaped crystals (Figure 1A), belonging to space group P41212, with one protein 140 

molecule in the asymmetric unit. However, upon analysis, it became apparent that these crystals only contained 141 

the C-terminal DLC-like domain of the protein. Interestingly, a similar outcome was reported following 142 

attempts to crystallise SmTAL2 (Costa et al. 2014). This suggests that the flexible linker between the EF-hand 143 

domain and the DLC-like domain in these proteins is susceptible to degradation by proteases. Indeed, we 144 

speculate that this may be important in their normal, in vivo functioning. The complete absence of the EF-hand 145 

domain in the structure is interesting and may indicate that this domain is less stable to proteolysis than the 146 

DLC-like domain. Later, we also crystallized the C-terminal domain (residues 99-189) separately. In this case, 147 

crystals belonging to space group P6422 were obtained, also with one protein monomer in the asymmetric unit 148 

(Figure 1B). 149 

 A methylmercury chloride derivative of a crystal of the P41212 form was prepared and diffraction data 150 

were collected from it (Table 1). Three heavy atom sites were located, of which one was well-occupied and later 151 

modelled as a mercury ion between cysteine residues 153 and 181. Single-wavelength anomalous dispersion led 152 

to good phases, which were used in an automatic model building procedure to yield a protein model with 97 153 

residues (Ala92 to Arg188; the entire C-terminal DLC-like domain plus a few residues of the linker between the 154 

N-terminal EF-hand domain and C-terminal DLC-like domain). Careful refinement at 2.3 Å resolution and 155 

inspection of electron density maps allowed the addition of a mercury ion, two chloride ions and 57 water 156 

molecules (PDB code 5FWZ). Using this structure, the structure of a native crystal of the P6422 space group 157 

was solved by molecular replacement and refined to 2.3 Å resolution. The final model of this structure contains 158 

89 amino acids, Ile99 to Pro187, plus nine residues of the N-terminal expression tag and eight water molecules 159 

(PDB code 5FX0). The packing of the molecules in the two crystal forms is very different, apart from the dimer 160 

interaction described below. The two structures of the DLC-domain are identical in the two crystal forms; a root 161 
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mean squared deviation (r.m.s.d) of only 0.5 Å is obtained when the C-α atoms of residues 99-187 are 162 

superposed. 163 

 The structure of the DLC-like domain revealed a compact, largely β-sheet structure (Figure 2). It 164 

consists of an anti-parallel β-sheet packed against a hairpin of α-helices (Figure 2A). The order of the β-strands 165 

is 0341 and the 12 hairpin is between strands 0 and 1 in the primary sequence. The structure is similar to 166 

many of the DLC domains in the PDB database. They can be superimposed with an r.m.s.d. of 1.5-2.0 Å (81-85 167 

superposed residues, DALI Z-scores between 13 and 14). Although Cys153 and Cys181 are physically close to 168 

each other, no cystine bond is observed between them. Cystine bonds are also not observed in other DLC-like 169 

domains (for example in PDB entries 1CMI, 3E2B or 4DS1 (Benison et al. 2008; Liang et al. 1999; Romes et al. 170 

2012)). Two cis-peptides are observed in the structure, Ala92-Pro93 (in the putative linker between the N- and 171 

C-terminal domains) and Arg149-Val150, a non-proline cis-peptide. Non-proline cis-peptides are rare, but the 172 

observed electron density clearly indicates their presence in this case. The experimental structure is in good 173 

agreement with the DLC-like domain of the previously published molecular model (Thomas and Timson 2015); 174 

residues 99-187 can be superposed with an rmsd of 2.7 Å (Figure 3A). Significant differences are only observed 175 

for the inter-domain linker, the loop between 1 and 2, strand 2 and the very C-terminal residues. The model 176 

was of a monomeric protein and so this structure enables us to understand, for the first time, the molecular basis 177 

of dimerization in these proteins. 178 

 179 

Dimer interactions 180 

The DLC-like domain of FhCaBP2 dimerises through an extended β-sheet structure (Figure 2). The interface is 181 

largely composed of the β2-strand from each subunit, bent through almost 180° into an arch. Strand 2 protrudes 182 

from the back of the molecule and interacts with strand 1 of another monomer to form a symmetric dimer (i.e., 183 

the dimer contains β-sheets 03412' and 0'3'4'1'2; Figure 2B). In both crystal forms, the same 184 

crystallographic dimer is observed, with an inter-monomer interface of about 1100 Å2 and an estimated 185 

dissociation energy of approximately 15 kcal.mol-1. Key residues in the interaction are those belonging to the 1- 186 

and 2-strands, five main-chain hydrogen bonds hold together each of the extended β-sheets. Side-chains of 187 

residues of the same strands also contribute to the hydrophobic interaction interface. Further hydrophobic 188 

interactions are formed between residues of the 2-strand and the 2-helix and between opposing 1-and 4-189 

strands. At least six additional hydrogen bonds involving side-chains are also present. Homo-dimer formation of 190 

the FhCaBP2 DLC-like domain is consistent with biochemical data (Thomas and Timson 2015) and identical to 191 
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known structures of DLC-like domains. This arrangement is also seen in DLC dimers from Saccharomyces 192 

cerevisiae (Dyn2p) (PDB 4DS1, Z-score 13.8, r.m.s.d. 1.8 Å2 when 84 C atoms are aligned; Romes et al. 193 

2012), in the rat 8 kDa DLC (PDB 1F3C; Z-score 10.3, r.m.s.d. 2.2 Å2 when 86 C atoms are aligned; Fan et al. 194 

2001) and in human dynein light chain 8 (PDB 3ZKE, Z-score 13.9, r.m.s.d. 1.6 Å2 when 83 C atoms are 195 

aligned; Gallego et al. 2013), albeit with somewhat smaller interaction surfaces (around 800 Å2) and predicted 196 

interaction energies (around 10 kcal.mol-1). While the conservation of the structural scaffold means that dimer 197 

interactions are almost identical in terms of main-chain hydrogen bonds, the low sequence identity between the 198 

FhCaBP2 DLC-like domain with the DLC domains mentioned above of around 20% means side-chain 199 

electrostatic interactions, hydrogen bonds and van der Waals interactions are very different. 200 

 In S. cerevisiae Dyn2p, peptides from the nuclear pore component Nup159p dock into the cleft 201 

between the two monomers of the DLC, further extending the β-sheet structure (Romes et al. 2012). Peptides 202 

from neuronal nitric oxide synthase (nNOS) and BCL2-like 11 (BIM, an apoptosis regulator) both bind into the 203 

cleft between the monomers in a similar arrangement to the Dyn2p-Nup159p interaction (PDB 1F95, 1F96 (Fan 204 

et al. 2001)). In human dynein light chain 8, peptides from the Nek7 protein kinase also bind to the same site 205 

(PDB 3ZKE, 3ZKF; Gallego et al. 2013). This demonstrates that a wide variety of different binding partners can 206 

interact with DLC dimers in this manner and suggests that FhCaBP2 (and other proteins from this family) may 207 

also exploit this mode of protein-protein interaction. A superposition of the FhCaBP2 DLC-like domain with the 208 

human dynein light chain 8 - Nek7 protein kinase peptide structure (Figure 3B) shows that, although the 209 

structures generally overlap very well, the 12-loop, 12-loop, 2-strand and 23-loop adopt somewhat 210 

different conformations (in S. cerevisiae Dyn2p and rat 8 kDa DLC, these secondary structure elements have a 211 

very similar conformation to that in human dynein light chain 8). In the superposition, the FhCaBP2 23-loop 212 

(highlighted with an arrow in Figure 3B) overlaps with the peptide, suggesting that the FhCaBP2 DLC-like 213 

domain, if it is involved in further protein-protein interactions, may need to change conformation to bind 214 

another protein or may bind its interaction partners in a somewhat different manner. 215 

 216 

Conclusions 217 

The structure reported here enables us to understand the dimerization of DLC-like domains of this class of 218 

proteins and validates the modelling techniques used to predict the structure of this domain in a range of 219 

proteins. It also suggests how this family of proteins might interact with other proteins through the DLC-like 220 

domain. The in vivo functions of this family of proteins remain enigmatic. However, it is hypothesised that they 221 
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may perform roles in calcium signalling in the tegument (Thomas and Timson 2016). If such a role is 222 

demonstrated then they would be very attractive targets for the development of novel anthelminthic drugs. One 223 

possible strategy would be the identification of molecules which disrupt dimer formation. This structure 224 

provides vital information to enable that process and the low sequence similarity in the dimerization region 225 

suggests that it should be possible to identify molecules which selectively target trematode proteins without 226 

affecting host DLCs.  227 

 228 
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 346 

Figure legends 347 

Fig. 1 Crystals of the dynein light chain-like domain of the Fasciola hepatica calcium-binding protein 2. a 348 

Crystal (about 0.2 x 0.15 x 0.1 mm) belonging to the P41212 spacegroup. b Crystal (about 0.45 x 0.2 x 0.2 mm) 349 

belonging to the P6422 spacegroup. 350 

 351 

Fig. 2 Structure of the DLC-like domain of FhCaBP2. a Monomer structure. The protein chain is coloured 352 

from blue (N-terminus) to red (C-terminus) in a rainbow colour scheme. β-Strands and α-helices are labelled. b 353 

Dimer structure. One monomer is coloured as in the previous panel, the other in cyan. Black arrows indicate 354 

where peptide interactions take place in other DLC domains. c Topology diagram of the dimer. Monomers are 355 

coloured as in the previous panel. 356 

 357 

Fig. 3 Comparison of the FhCaBP2 DLC-like domain with the modelled structure of the whole protein and 358 

with other DLC domains. a Superposition of the crystallographically determined structure of the FhCaBP2 359 

DLC-like domain (in green) and the previously published model of the entire structure (in magenta). The 360 

predicted calcium ion is shown in grey and the termini of the DLC-like domain are indicated. b Superposition of 361 

the FhCaBP2 DLC-like domain (in green) and human dynein light chain 8 (PDB entry 3ZKE, in blue). The 362 

peptide bound to human dynein light chain 8 is shown in yellow and the 23-loop is highlighted with an arrow. 363 
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Table 1 Crystallographic data collection, phase determination, solvent flattening and refinement statistics (all 

values in parenthesis are for the highest resolution bin). 

 

Data collection Derivative Native 

Space group P41212 P6422 

Unit cell dimensions (a, b, c) (Å)  59.9, 59.9, 81.3 57.9, 57.9, 90.0 

Wavelength (Å)  1.0056 1.0047 

Resolution (Å)  23.0-2.30 (2.42-2.30) 50.0-2.20 (2.32-2.20) 

Observed reflections 7026 (990) 5253 (726) 

Multiplicity 9.6 (9.7) 11.0 (11.7) 

Completeness (%) 99.9 (100.0) 100.0 (100.0) 

Rmerge (%) 11.7 (47.4) 5.7 (49.3) 

<I/sigma(I)> 12.0 (4.5) 22.7 (5.0) 

Wilson B (Å2)  30.9 41.2 

CC1/2 0.997 (0.929) 1.000 (0.969) 

CCanom 0.567 (0.015) -0.129 (0.049) 

Phase determination 

Number of heavy atom sites (Hg) 3 - 

Anomalous phasing power 1.185 - 

Figure of merit (acentric / centric) 0.315/0.137 - 

Solvent flattening (53.6% solvent) 

Hand score (original / inverted) 0.593 / 0.247 - 

Overall correlation on |E|2 / contrast 3.72 - 

Refinement 

Resolution range (Å)  23.0-2.30 (2.36-2.30) 50.0-2.30 (2.36-2.30) 

No. reflections used in refinement 6289 (445) 4093 (282) 

No. reflections used for R-free  702 (44) 484 (34) 

R-factor (%) 19.1 (23.0) 20.2 (29.6) 

R-free (%) 24.1 (26.3) 27.5 (49.4) 

Number of protein / Hg / Cl / solvent atoms  802 / 1 / 2 / 57 816 / 0 / 0 / 7 

Average B protein / Hg / Cl / solvent atoms (Å2) 37.0 / 48.4 / 62.3 / 40.4 63.1 / - / - / 55.1 

Ramachandran plot (favoured / allowed) (%) 99.0 / 100.0 97.9 / 100.0 

R.m.s. deviation of bonds (Å) and angles (º) 0.012 / 1.5 0.011 / 1.5 

PDB code 5FWZ 5FX0 
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