21 research outputs found
Two classes of generalized functions used in nonlocal field theory
We elucidate the relation between the two ways of formulating causality in
nonlocal quantum field theory: using analytic test functions belonging to the
space (which is the Fourier transform of the Schwartz space )
and using test functions in the Gelfand-Shilov spaces . We prove
that every functional defined on has the same carrier cones as its
restrictions to the smaller spaces . As an application of this
result, we derive a Paley-Wiener-Schwartz-type theorem for arbitrarily singular
generalized functions of tempered growth and obtain the corresponding extension
of Vladimirov's algebra of functions holomorphic on a tubular domain.Comment: AMS-LaTeX, 12 pages, no figure