310 research outputs found

    Renal pericytes: regulators of medullary blood flow

    Get PDF
    Regulation of medullary blood flow (MBF) is essential in maintaining normal kidney function. Blood flow to the medulla is supplied by the descending vasa recta (DVR), which arise from the efferent arterioles of juxtamedullary glomeruli. DVR are composed of a continuous endothelium, intercalated with smooth muscle-like cells called pericytes. Pericytes have been shown to alter the diameter of isolated and in situ DVR in response to vasoactive stimuli that are transmitted via a network of autocrine and paracrine signalling pathways. Vasoactive stimuli can be released by neighbouring tubular epithelial, endothelial, red blood cells and neuronal cells in response to changes in NaCl transport and oxygen tension. The experimentally described sensitivity of pericytes to these stimuli strongly suggests their leading role in the phenomenon of MBF autoregulation. Because the debate on autoregulation of MBF fervently continues, we discuss the evidence favouring a physiological role for pericytes in the regulation of MBF and describe their potential role in tubulo-vascular cross-talk in this region of the kidney. Our review also considers current methods used to explore pericyte activity and function in the renal medulla

    The Importance of Conserving Biodiversity Outside of Protected Areas in Mediterranean Ecosystems

    Get PDF
    Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work

    The biogeography of South African terrestrial plant invasions

    Get PDF
    Thousands of plant species have been introduced, intentionally and accidentally, to South Africa from many parts of the world. Alien plants are now conspicuous features of many South African landscapes and hundreds of species have naturalised (i.e. reproduce regularly without human intervention), many of which are also invasive (i.e. have spread over long distances). There is no comprehensive inventory of alien, naturalised, and invasive plants for South Africa, but 327 plant taxa, most of which are invasive, are listed in national legislation. We collated records of 759 plant taxa in 126 families and 418 genera that have naturalised in natural and semi-natural ecosystems. Over half of these naturalised taxa are trees or shrubs, just under a tenth are in the families Fabaceae (73 taxa) and Asteraceae (64); genera with the most species are Eucalyptus,Acacia, and Opuntia. The southern African Plant Invaders Atlas (SAPIA) provides the best data for assessing the extent of invasions at the national scale. SAPIA data show that naturalised plants occur in 83% of quarter-degree grid cells in the country. While SAPIA data highlight general distribution patterns (high alien plant species richness in areas with high native plant species richness and around the main human settlements), an accurate, repeatable method for estimating the area invaded by plants is lacking. Introductions and dissemination of alien plants over more than three centuries, and invasions over at least 120 years (and especially in the last 50 years) have shaped the distribution of alien plants in South Africa. Distribution patterns of naturalised and invasive plants define four ecologically-meaningful clusters or “alien plant species assemblage zones”, each with signature alien plant taxa for which trait-environment interactions can be postulated as strong determinants of success. Some widespread invasive taxa occur in high frequencies across multiple zones; these taxa occur mainly in riparian zones and other azonal habitats,or depend on human-mediated disturbance, which weakens or overcomes the factors that determine specificity to any biogeographical region

    Psychoeducation and the family burden in schizophrenia: a randomized controlled trial

    Get PDF
    Abstract Background The majority of patients with schizophrenia live with their relatives in Pakistan, thereby families experience a considerable burden. We aimed to study the impact of psychoeducation on the burden of schizophrenia on the family in a randomised controlled trial. Methods A total of 108 patients with schizophrenia and their family members from the outpatient department of a teaching hospital in Lahore, Pakistan were randomised. Both groups received psychotropic drugs but one group received psychoeducation in addition. Family burden was assessed at the time of recruitment and at 6 months post intervention. Results In all, 99 patients and their relatives completed the treatment. There was significant reduction in burden at post-intervention assessment in the psychoeducation group based on intention to treat analysis. Conclusion Family psychoeducation can be an important intervention for patients with schizophrenia in Pakistan.</p

    The Effect of Map Boundary on Estimates of Landscape Resistance to Animal Movement

    Get PDF
    BACKGROUND: Artificial boundaries on a map occur when the map extent does not cover the entire area of study; edges on the map do not exist on the ground. These artificial boundaries might bias the results of animal dispersal models by creating artificial barriers to movement for model organisms where there are no barriers for real organisms. Here, we characterize the effects of artificial boundaries on calculations of landscape resistance to movement using circuit theory. We then propose and test a solution to artificially inflated resistance values whereby we place a buffer around the artificial boundary as a substitute for the true, but unknown, habitat. METHODOLOGY/PRINCIPAL FINDINGS: We randomly assigned landscape resistance values to map cells in the buffer in proportion to their occurrence in the known map area. We used circuit theory to estimate landscape resistance to organism movement and gene flow, and compared the output across several scenarios: a habitat-quality map with artificial boundaries and no buffer, a map with a buffer composed of randomized habitat quality data, and a map with a buffer composed of the true habitat quality data. We tested the sensitivity of the randomized buffer to the possibility that the composition of the real but unknown buffer is biased toward high or low quality. We found that artificial boundaries result in an overestimate of landscape resistance. CONCLUSIONS/SIGNIFICANCE: Artificial map boundaries overestimate resistance values. We recommend the use of a buffer composed of randomized habitat data as a solution to this problem. We found that resistance estimated using the randomized buffer did not differ from estimates using the real data, even when the composition of the real data was varied. Our results may be relevant to those interested in employing Circuitscape software in landscape connectivity and landscape genetics studies

    Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity

    Get PDF
    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust alternative to species-level predictions
    corecore