31,047 research outputs found
Modelling the chemical evolution of the Galaxy halo
We study the chemical evolution and formation of the Galactic halo through
the analysis of its stellar metallicity distribution function and some key
elemental abundance patterns. Starting from the two-infall model for the
Galaxy, which predicts too few low-metallicity stars, we add a gas outflow
during the halo phase with a rate proportional to the star formation rate
through a free parameter, lambda. In addition, we consider a first generation
of massive zero-metal stars in this two-infall + outflow model adopting two
different top-heavy initial mass functions and specific population III yields.
The metallicity distribution function of halo stars, as predicted by the
two-infall + outflow model shows a good agreement with observations, when the
parameter lambda=14 and the time scale for the first infall, out of which the
halo formed, is not longer than 0.2 Gyr, a lower value than suggested
previously. Moreover, the abundance patterns [X/Fe] vs. [Fe/H] for C, N and
alpha-elements O, Mg, Si, S, Ca show a good agreement with the observational
data. If population III stars are included, under the assumption of different
initial mass functions, the overall agreement of the predicted stellar
metallicity distribution function with observational data is poorer than in the
case without population III. We conclude that it is fundamental to include both
a gas infall and outflow during the halo formation to explain the observed halo
metallicity distribution function, in the framework of a model assuming that
the stars in the inner halo formed mostly in situ. Moreover, we find that it
does not exist a satisfactory initial mass function for population III stars
which reproduces the observed halo metallicity distribution function. As a
consequence, there is no need for a first generation of only massive stars to
explain the evolution of the Galactic halo.Comment: Accepted for publication in A&A. 11 pages, 5 figure
Standard and Specialized Infant Formulas in Europe: Making, Marketing, and Health Outcomes
Infant formulas are the only suitable substitute for human milk. The most common infant formulas are standard formulas based on cow's milk. In addition, there are formulas for infants showing signs and symptoms of intolerance and for clinical conditions such as allergy, prematurity, and gastrointestinal diseases. A comprehensive review of the literature was made to review the composition of standard and specialized infant formulas and analyze indications for use, real or presumed nutrition differences and properties, and impact on infant growth. A brief consideration on costs is outlined for each formula. Over the past few years, industrial production and advertising of infant formulas have increased. Human milk still remains the most complete source of nutrition for infants and should be continued according to the current recommendations. Few differences exist between infant formulas, both for the nutrition action and the macronutrient/micronutrient composition. Specialized infant formulas have limited indications for use and high costs. The role of the pediatrician is crucial in the management of infant nutrition, promotion of breastfeeding, and prescribing of specialized formulas only in specific clinical conditions
The determination of velocity fluctuations in shear flows by means of PTV
The present study considers the effects of some parameters in image acquisition and analysis procedures in connection with the use of the Particle Tracking Velocimetry (PTV) technique. The interest is focused towards flow fields with large velocity gradients as shear flows; in the paper, velocity measurements by PTV are performed in a turbulent channel flow upstream and downstream of a backward facing step at low Reynolds numbers. This is a flow field largely investigated in the past with available numerical and experimental to make comparison with. Among the possible parameters to be chosen in particle image acquisition and analysis, the following are considered
- the concentration of seeding particles in the imaged region;
- the spatial resolution of the image acquisition system;
- the parameters used in the image analysis algorithm
An experimental study of wall-injected flows in a rectangular cylinder
An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the Particle Image Velocimetry (PIV) technique, in order to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions
Feedback from massive stars and gas expulsion from proto-globular clusters
© 2015. The American Astronomical Society. All rights reserved. Globular clusters (GCs) are considerably more complex structures than previously thought, harboring at least two stellar generations that present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in GCs mostly assume that originally the clusters had to be much more massive than today, and that the second generation of stars originates from the gas shed by stars of the first generation (FG). The lack of metallicity spread in most GCs further requires that the supernova-enriched gas ejected by the FG is completely lost within ∼30 Myr, a hypothesis never tested by means of three-dimensional hydrodynamic simulations. In this paper, we use 3D hydrodynamic simulations including stellar feedback from winds and supernovae, radiative cooling and self-gravity to study whether a realistic distribution of OB associations in a massive proto-GC of initial mass M tot ∼ 10 7 M o is sufficient to expel its entire gas content. Our numerical experiment shows that the coherence of different associations plays a fundamental role: as the bubbles interact, distort, and merge, they carve narrow tunnels that reach deeper and deeper toward the innermost cluster regions, and through which the gas is able to escape. Our results indicate that after 3 Myr, the feedback from stellar winds is responsible for the removal of ∼40% of the pristine gas, and that after 14 Myr, 99% of the initial gas mass has been removed
Two years of monitoring Supergiant Fast X-ray Transients with Swift
We present two years of intense Swift monitoring of three SFXTs, IGR
J16479-4514, XTE J1739-302, and IGR J17544-2619 (since October 2007).
Out-of-outburst intensity-based X-ray (0.3-10keV) spectroscopy yields absorbed
power laws with by hard photon indices (G~1-2). Their outburst broad-band
(0.3-150 keV) spectra can be fit well with models typically used to describe
the X-ray emission from accreting NSs in HMXBs. We assess how long each source
spends in each state using a systematic monitoring with a sensitive instrument.
These sources spend 3-5% of the total in bright outbursts. The most probable
flux is 1-2E-11 erg cm^{-2} s^{-1} (2-10 keV, unabsorbed), corresponding to
luminosities in the order of a few 10^{33} to 10^{34} erg s^{-1} (two orders of
magnitude lower than the bright outbursts). The duty-cycle of inactivity is 19,
39, 55%, for IGR J16479-4514, XTE J1739-302, and IGR J17544-2619, respectively.
We present a complete list of BAT on-board detections further confirming the
continued activity of these sources. This demonstrates that true quiescence is
a rare state, and that these transients accrete matter throughout their life at
different rates. X-ray variability is observed at all timescales and
intensities we can probe. Superimposed on the day-to-day variability is
intra-day flaring which involves variations up to one order of magnitude that
can occur down to timescales as short as ~1ks, and whichcan be explained by the
accretion of single clumps composing the donor wind with masses
M_cl~0.3-2x10^{19} g. (Abridged)Comment: Accepted for publication in MNRAS. 17 pages, 11 figures, 8 table
Recommended from our members
Quantum spin Hall effect in bound states in continuum
Moving the polarization of the incident wave along a meridian of the Poincaré sphere, experimentally we show that the coupling with the fundamental Bloch's surface waves of the mode, provide a spatially coherent, macroscopic spinmomentum locked propagation along the symmetry axes of the PhCM. This novel mechanism of light-spin manipulation enables a versatile implementation of spin-optical structures that may pave the way to novel strategies for light spin technology and photonic multiplatform implementations
- …
