1,659 research outputs found

    Comparison of reduced models for blood flow using Runge-Kutta discontinuous Galerkin methods

    Full text link
    One-dimensional blood flow models take the general form of nonlinear hyperbolic systems but differ greatly in their formulation. One class of models considers the physically conserved quantities of mass and momentum, while another class describes mass and velocity. Further, the averaging process employed in the model derivation requires the specification of the axial velocity profile; this choice differentiates models within each class. Discrepancies among differing models have yet to be investigated. In this paper, we systematically compare several reduced models of blood flow for physiologically relevant vessel parameters, network topology, and boundary data. The models are discretized by a class of Runge-Kutta discontinuous Galerkin methods

    Subcritical open channel flows in four branch intersections

    Get PDF
    International audience[1] Subcritical flow in an intersection composed of four similar orthogonal channels has been studied experimentally in a configuration with two inflows and two outflows for a wide range of experimental conditions. The results have been used to develop a relationship between the incoming flow rates and the flow distribution in the two outlet channels, based on the conservation of discharge and momentum in the intersection, and suitable stage-discharge relationships for the downstream controls in the outflow channels. A final equation is provided by an empirical correlation for the outflow in one of the channels, based on the experimental data obtained from these experiments; this correlation agrees with all the available data to within 65%. It is shown how the resulting set of equations can be used to compute the discharge distribution in any similar intersection, given the incoming flow rates and some form of stage-discharge relationship for the outlet conditions

    Characteristics of the recirculation cell pattern in a lateral cavity

    Get PDF
    River hydrodynamicsInteraction with structure

    Herschel GASPS spectral observations of T Tauri stars in Taurus: unraveling far-infrared line emission from jets and discs

    Get PDF
    At early stages of stellar evolution young stars show powerful jets and/or outflows that interact with protoplanetary discs and their surroundings. Despite the scarce knowledge about the interaction of jets and/or outflows with discs, spectroscopic studies based on Herschel and ISO data suggests that gas shocked by jets and/or outflows can be traced by far-IR (FIR) emission in certain sources. We want to provide a consistent catalogue of selected atomic ([OI] and [CII]) and molecular (CO, OH, and H2_{2}O) line fluxes observed in the FIR, separate and characterize the contribution from the jet and the disc to the observed line emission, and place the observations in an evolutionary picture. The atomic and molecular FIR (60-190 μm\rm \mu m) line emission of protoplanetary discs around 76 T Tauri stars located in Taurus are analysed. The observations were carried out within the Herschel key programme Gas in Protoplanetary Systems (GASPS). The spectra were obtained with the Photodetector Array Camera and Spectrometer (PACS). The sample is first divided in outflow and non-outflow sources according to literature tabulations. With the aid of archival stellar/disc and jet/outflow tracers and model predictions (PDRs and shocks), correlations are explored to constrain the physical mechanisms behind the observed line emission. The much higher detection rate of emission lines in outflow sources and the compatibility of line ratios with shock model predictions supports the idea of a dominant contribution from the jet/outflow to the line emission, in particular at earlier stages of the stellar evolution as the brightness of FIR lines depends in large part on the specific evolutionary stage. [Abridged Abstract]Comment: 37 pages, 27 figures, accepted for publication in A&

    Efficient Multiphysics Design Workflow of Synchronous Reluctance Motors

    Get PDF
    This paper proposes a new design strategy for Synchronous Reluctance machines, with cooperative design in the two environments SyR-e and Motor-CAD. The paper proposes to use the open-source SyR-e for initial, equation based design of the machine. Then, the design is validated and refined in Motor-CAD, in multiple physical domains. This synergy complements both design environments and turns into a comprehensive design package, not yet available in the literature, assembling accessible design equations, magnetic and mechanical FEA and drive operating profiles evaluation to the trademark thermal analysis of Motor-CAD. The cooperative design strategy is described in the paper with reference to the case of a Pure Synchronous Reluctance motor prototype for vehicular tractio

    Herschel PACS Observations and Modeling of Debris Disks in the Tucana-Horologium Association

    Full text link
    We present Herschel PACS photometry of seventeen B- to M-type stars in the 30 Myr-old Tucana-Horologium Association. This work is part of the Herschel Open Time Key Programme "Gas in Protoplanetary Systems" (GASPS). Six of the seventeen targets were found to have infrared excesses significantly greater than the expected stellar IR fluxes, including a previously unknown disk around HD30051. These six debris disks were fitted with single-temperature blackbody models to estimate the temperatures and abundances of the dust in the systems. For the five stars that show excess emission in the Herschel PACS photometry and also have Spitzer IRS spectra, we fit the data with models of optically thin debris disks with realistic grain properties in order to better estimate the disk parameters. The model is determined by a set of six parameters: surface density index, grain size distribution index, minimum and maximum grain sizes, and the inner and outer radii of the disk. The best fitting parameters give us constraints on the geometry of the dust in these systems, as well as lower limits to the total dust masses. The HD105 disk was further constrained by fitting marginally resolved PACS 70 micron imaging.Comment: 15 pages, 7 figures, Accepted to Ap

    Numerical method of characteristics for one-dimensional blood flow

    Full text link
    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant
    corecore