4,262 research outputs found
Robotics and Military Operations
In the wake of two extended wars, Western militaries find themselves looking to the future while confronting amorphous nonstate threats and shrinking defense budgets. The 2015 Kingston Conference on International Security (KCIS) examined how robotics and autonomous systems that enhance soldier effectiveness may offer attractive investment opportunities for developing a more efficient force capable of operating effectively in the future environment. This monograph offers 3 chapters derived from the KCIS and explores the drivers influencing strategic choices associated with these technologies and offers preliminary policy recommendations geared to advance a comprehensive technology investment strategy. In addition, the publication offers insight into the ethical challenges and potential positive moral implications of using robots on the modern battlefield.https://press.armywarcollege.edu/monographs/1398/thumbnail.jp
Closed-form sums for some perturbation series involving associated Laguerre polynomials
Infinite series sum_{n=1}^infty {(alpha/2)_n / (n n!)}_1F_1(-n, gamma, x^2),
where_1F_1(-n, gamma, x^2)={n!_(gamma)_n}L_n^(gamma-1)(x^2), appear in the
first-order perturbation correction for the wavefunction of the generalized
spiked harmonic oscillator Hamiltonian H = -d^2/dx^2 + B x^2 + A/x^2 +
lambda/x^alpha 0 0, A >= 0. It is proved that the
series is convergent for all x > 0 and 2 gamma > alpha, where gamma = 1 +
(1/2)sqrt(1+4A). Closed-form sums are presented for these series for the cases
alpha = 2, 4, and 6. A general formula for finding the sum for alpha/2 = 2 + m,
m = 0,1,2, ..., in terms of associated Laguerre polynomials, is also provided.Comment: 16 page
Quantum Cryptography
Quantum cryptography is a new method for secret communications offering the
ultimate security assurance of the inviolability of a Law of Nature. In this
paper we shall describe the theory of quantum cryptography, its potential
relevance and the development of a prototype system at Los Alamos, which
utilises the phenomenon of single-photon interference to perform quantum
cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures
compressed tar fil
Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures
Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes
Heart rate variability predicts 30-day all-cause mortality in intensive care units
Background: Autonomic nervous function, as quantified by heart rate variability (HRV), has shown promise in predicting clinically important outcomes in the critical care setting; however, there is debate concerning its utility. HRV analysis was assessed as a practical tool for outcome prediction in two South African hospitals and compared with Acute Physiology and Chronic Health Evaluation II (APACHE II) scoring.Method: In a dual centre, prospective, observational cohort study of patients admitted to the intensive care units (ICU) of two hospitals in KwaZulu-Natal, South Africa frequency domain HRV parameters were explored as predictors of: all-cause mortality at 30 days after admission; ICU stay duration; the need for invasive ventilation; the need for inotrope/vasopressor therapy; and the need for renal replacement therapy. The predictive ability of HRV parameters against the APACHE II score for the study outcomes was also compared.Results: A total of 55 patients were included in the study. Very low frequency power (VLF) was shown to predict 30-day mortality in ICU (odds ratio 0.6; 95% confidence interval 0.396–0.911). When compared with APACHE II, VLF remained a significant predictor of outcome, suggesting that it adds a unique component of prediction. No HRV parameters were predictive for the other secondary outcomes.Conclusion: This study found that VLF independently predicted all-cause mortality at 30 days after ICU admission. VLF provided additional predictive ability above that of the APACHE II score. As suggested by this exploratory analysis larger multi-centre studies seem warranted.Keywords: APACHE II, autonomic nervous system, critical care, heart rate variability, mortalit
The Epsilon Calculus and Herbrand Complexity
Hilbert's epsilon-calculus is based on an extension of the language of
predicate logic by a term-forming operator . Two fundamental
results about the epsilon-calculus, the first and second epsilon theorem, play
a role similar to that which the cut-elimination theorem plays in sequent
calculus. In particular, Herbrand's Theorem is a consequence of the epsilon
theorems. The paper investigates the epsilon theorems and the complexity of the
elimination procedure underlying their proof, as well as the length of Herbrand
disjunctions of existential theorems obtained by this elimination procedure.Comment: 23 p
Probing the structure and dynamics of molecular clusters using rotational wavepackets
The chemical and physical properties of molecular clusters can heavily depend
on their size, which makes them very attractive for the design of new materials
with tailored properties. Deriving the structure and dynamics of clusters is
therefore of major interest in science. Weakly bound clusters can be studied
using conventional spectroscopic techniques, but the number of lines observed
is often too small for a comprehensive structural analysis. Impulsive alignment
generates rotational wavepackets, which provides simultaneous information on
structure and dynamics, as has been demonstrated successfully for isolated
molecules. Here, we apply this technique for the firsttime to clusters
comprising of a molecule and a single helium atom. By forcing the population of
high rotational levels in intense laser fields we demonstrate the generation of
rich rotational line spectra for this system, establishing the highly
delocalised structure and the coherence of rotational wavepacket propagation.
Our findings enable studies of clusters of different sizes and complexity as
well as incipient superfluidity effects using wavepacket methods.Comment: 5 pages, 6 figure
Green's function for a Schroedinger operator and some related summation formulas
Summation formulas are obtained for products of associated Lagurre
polynomials by means of the Green's function K for the Hamiltonian H =
-{d^2\over dx^2} + x^2 + Ax^{-2}, A > 0. K is constructed by an application of
a Mercer type theorem that arises in connection with integral equations. The
new approach introduced in this paper may be useful for the construction of
wider classes of generating function.Comment: 14 page
The Structure of the Homunculus. III. Forming a Disk and Bipolar Lobes in a Rotating Surface Explosion
We present a semi-analytic model for shaping the nebula around eta Carinae
that accounts for the simultaneous production of bipolar lobes and an
equatorial disk through a rotating surface explosion. Material is launched
normal to the surface of an oblate rotating star with an initial kick velocity
that scales approximately with the local escape speed. Thereafter, ejecta
follow ballistic orbital trajectories, feeling only a central force
corresponding to a radiatively reduced gravity. Our model is conceptually
similar to the wind-compressed disk model of Bjorkman & Cassinelli, but we
modify it to an explosion instead of a steady line-driven wind, we include a
rotationally-distorted star, and we treat the dynamics somewhat differently.
Continuum-driving avoids the disk inhibition that normally operates in
line-driven winds. Our model provides a simple method by which rotating hot
stars can simultaneously produce intrinsically bipolar and equatorial mass
ejections, without an aspherical environment or magnetic fields. Although
motivated by eta Carinae, the model may have generic application to other LBVs,
B[e] stars, or SN1987A's nebula. When near-Eddington radiative driving is less
influential, our model generalizes to produce bipolar morphologies without
disks, as seen in many PNe.Comment: ApJ accepted, 9 page
- …