3,609 research outputs found

    Aberration of the Cosmic Microwave Background

    Full text link
    The motion of the solar system barycenter with respect to the cosmic microwave background (CMB) induces a very large apparent dipole component into the CMB brightness map at the 3 mK level. In this Letter we discuss another kinematic effect of our motion through the CMB: the small shift in apparent angular positions due to the aberration of light. The aberration angles are only of order beta ~0.001, but this leads to a potentially measurable compression (expansion) of the spatial scale in the hemisphere toward (away from) our motion through the CMB. In turn, this will shift the peaks in the acoustic power spectrum of the CMB by a factor of order 1 +/- beta. For current CMB missions, and even those in the foreseeable future, this effect is small, but should be taken into account. In principle, if the acoustic peak locations were not limited by sampling noise (i.e., the cosmic variance), this effect could be used to determine the cosmic contribution to the dipole term.Comment: 3 pages, 1 figure, comments welcome. Submitted to ApJ Letter

    Materials and methods for large-area solar cells Final report, 17 Dec. 1964 - 16 Dec. 1965

    Get PDF
    Growth and evaluation of gallium arsenide-indium arsenide-aluminum foil structures in construction of thin film large area solar cells for satellite

    Excess Returns and Preferred Stock Rating Changes

    Get PDF
    Jerry G. Hunt is Professor of Finance and Acting Chairman of the Departmenl of Finance in the School of Business at East Carolina University. Allen Rappaport is an Associate Professor of Finance in the Deparlment of Management at lhe University of Northern Iowa

    Big Bang Nucleosynthesis Constraints on the Self-Gravity of Pressure

    Get PDF
    Using big bang nucleosynthesis and present, high-precision measurements of light element abundances, we constrain the self-gravity of radiation pressure in the early universe. The self-gravity of pressure is strictly non-Newtonian, and thus the constraints we set provide a direct test of this prediction of general relativity and of the standard, Robertson-Walker-Friedmann cosmology.Comment: 5 pages, 1 figure. This paper was developed from an earlier version which was posted as arXiv:0707.358

    A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles

    Full text link
    Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity (K≃0.02K\simeq 0.02 cm2^2/g) and velocity dispersion of (co≃0.6c_o\simeq 0.6 cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Saturn's rings. It is very accurate and efficient in the far-wave region. However, improvements are required within the first wavelength. The ways in which this method can be used to establish diagnostics of ring physics are outlined.Comment: 50 pages,13 figures, 2 tables. Published in Icarus

    Dynamic Creation and Annihilation of Metastable Vortex Phase as a Source of Excess Noise

    Full text link
    The large increase in voltage noise, commonly observed in the vicinity of the peak-effect in superconductors, is ascribed to a novel noise mechanism. A strongly pinned metastable disordered vortex phase, which is randomly generated at the edges and annealed into ordered phase in the bulk, causes large fluctuations in the integrated critical current of the sample. The excess noise due to this dynamic admixture of two distinct phases is found to display pronounced reentrant behavior. In the Corbino geometry the injection of the metastable phase is prevented and, accordingly, the excess noise disappearsComment: 5 pages 3 figures. Accepted for publication in Europhysics letter

    The Fermi edge singularity of spin polarized electrons

    Full text link
    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electron, differ in magnitude, linewidth and filling factor dependence. We show that these differences can be explained as resulting from creation of a Mahan exciton in one case, and of a power law Fermi edge singularity in the other.Comment: 4 pages, 4 figures, published in Phys. Rev. Let
    • …
    corecore