123 research outputs found
Vector Meson Photoproduction at High-t and Comparison to HERA Data
We explore QCD calculations for the process gamma p -> V X where V is a
vector meson, in the region s >> -t and -t >> Lambda_QCD^2. We compare our
calculations for the J/psi, phi and rho mesons with data from the ZEUS
Collaboration at HERA and demonstrate that the BFKL approach is consistent with
the data even for light mesons, whereas the two-gluon exchange approach is
inadequate. We also predict the differential cross-sections for the Upsilon and
omega for which no data are currently available.Comment: 9 pages including 2 postscript figure
CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography
Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan.
This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track indi- vidual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs
Proton radiography and tomography with application to proton therapy
Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio (SPR) inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active that at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, its historical developments, the raft of modern prototype systems and the primary design issues
Expected proton signal sizes in the PRaVDA Range Telescope for proton Computed Tomography
Proton radiotherapy has demonstrated benefits in the treatment of certain cancers. Accurate measurements of the proton stopping powers in body tissues are required in order to fully optimise the delivery of such treaments. The PRaVDA Consortium is developing a novel, fully solid state device to measure these stopping powers. The PRaVDA Range Telescope (RT), uses a stack of 24 CMOS Active Pixel Sensors (APS) to measure the residual proton energy after the patient. We present here the ability of the CMOS sensors to detect changes in the signal sizes as the proton traverses the RT, compare the results with theory, and discuss the implications of these results on the reconstruction of proton tracks
Testing the dynamics of high energy scattering using vector meson production
I review work on diffractive vector meson production in photon-proton
collisions at high energy and large momentum transfer, accompanied by proton
dissociation and a large rapidity gap. This process provides a test of the high
energy scattering dynamics, but is also sensitive to the details of the
treatment of the vector meson vertex.
The emphasis is on the description of the process by a solution of the
non-forward BFKL equation, i.e. the equation describing the evolution of
scattering amplitudes in the high-energy limit of QCD. The formation of the
vector meson and the non-perturbative modeling needed is also briefly
discussed.Comment: 17 pages, 8 figures. Brief review to appear in Mod. Phys. Lett.
A Dynamic Programming Approach to Adaptive Fractionation
We conduct a theoretical study of various solution methods for the adaptive
fractionation problem. The two messages of this paper are: (i) dynamic
programming (DP) is a useful framework for adaptive radiation therapy,
particularly adaptive fractionation, because it allows us to assess how close
to optimal different methods are, and (ii) heuristic methods proposed in this
paper are near-optimal, and therefore, can be used to evaluate the best
possible benefit of using an adaptive fraction size.
The essence of adaptive fractionation is to increase the fraction size when
the tumor and organ-at-risk (OAR) are far apart (a "favorable" anatomy) and to
decrease the fraction size when they are close together. Given that a fixed
prescribed dose must be delivered to the tumor over the course of the
treatment, such an approach results in a lower cumulative dose to the OAR when
compared to that resulting from standard fractionation. We first establish a
benchmark by using the DP algorithm to solve the problem exactly. In this case,
we characterize the structure of an optimal policy, which provides guidance for
our choice of heuristics. We develop two intuitive, numerically near-optimal
heuristic policies, which could be used for more complex, high-dimensional
problems. Furthermore, one of the heuristics requires only a statistic of the
motion probability distribution, making it a reasonable method for use in a
realistic setting. Numerically, we find that the amount of decrease in dose to
the OAR can vary significantly (5 - 85%) depending on the amount of motion in
the anatomy, the number of fractions, and the range of fraction sizes allowed.
In general, the decrease in dose to the OAR is more pronounced when: (i) we
have a high probability of large tumor-OAR distances, (ii) we use many
fractions (as in a hyper-fractionated setting), and (iii) we allow large daily
fraction size deviations.Comment: 17 pages, 4 figures, 1 tabl
An experimental demonstration of a new type of proton computed tomography using a novel silicon tracking detector
Radiography and tomography using proton beams promises benefit to image-guidance and treatment planning for proton therapy. A novel proton tracking detector is described and experimental demon- strations at a therapy facility reported. A new type of proton CT reconstructing relative ‘scattering-power’ rather than ‘stopping-power’ is also demonstrated.
Notably, this new type of imaging does not require the measurement of the residual energies of the protons.
Successful tracking of protons through a thick target (phantom) has demonstrated that the tracker discussed in this paper can provide the precise directional information needed to perform proton radiography and tomography. When synchronized with a range telescope, this could enable the reconstruction of proton CT images of stopping power. Furthermore, by measuring the deflection of many protons through a phantom it was demonstrated that it is possible to reconstruct a new kind of CT image (scattering power) based upon this tracking information alone
- …