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ABSTRACT: Proton radiotherapy has demonstrated benefits in the treatment of certain cancers.
Accurate measurements of the proton stopping powers in bodytissues are required in order to fully
optimise the delivery of such treaments. The PRaVDA Consortium is developing a novel, fully
solid state device to measure these stopping powers. The PRaVDA Range Telescope (RT), uses
a stack of 24 CMOS Active Pixel Sensors (APS) to measure the residual proton energy after the
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results on the reconstruction of proton tracks.
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1 Introduction

Proton radiotherapy uses external beams of high energy protons to treat cancer. Proposed by Robert
Wilson in 1946 [1], the first patient was treated with proton radiotherapy at Berkeley Radiation
Laboratory (California, US) in 1954 [2]. Patients were not treated with protons in a clinical en-
vironment until 1989 when the Clatterbridge Centre for Oncology (Wirral, U.K.) started treating
ocular cancers with 62 MeV protons [3]. However, the popularity of proton radiotherapy around
the world has increased in recent years with a rapid increasein centres, both in operation and in the
planning stages [4].

When a high energy proton interacts within a material it willdeposit a fraction of its energy.
The amount of energy deposited per unit length is known as theproton stopping power. As a
proton slows it interacts more often, and the stopping powerincreases. This leads to a run away
effect where a proton deposits most of its energy towards theend of its range, a phenomenon known
as the Bragg Peak (BP). The location of the BP can be set withina tumour volume by modifying
the incident kinetic energy of the protons. There is no energy deposition after the BP which is
particularly useful in radiotherapy with a target volume immediately adjacent to a critical organ
as this minimises the dose to healthy tissue behind the tumour. Three pieces of information are
required to ensure the BP occurs within the tumour volume: (1) the location and size of the tumour,
(2) the stopping powers of the body tissues between the beam and the tumour, and (3) the location
of the patient relative to the beam during treatment.

Conventionally, a patient will receive a CT scan to locate the tumour and identify surrounding
healthy tissues. However, a CT scan is obtained using beams of x-rays which yield an image of
the electron density of a material, not its stopping power. It is possible to convert the images to
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stopping powers with a generally accepted uncertainty on the final proton range of 3.5% [5]. A de-
tailed Monte Carlo study suggests the contribution to this from the conversion is 1.5–2% [6]. This
propagates as an uncertainty on the position of the BP and canlead to under treatment of the target
volume or overdosing the surrounding healthy tissue. This uncertainty could be significantly re-
duced, and treatment planning improved, if the patient was imaged directly with protons producing
a proton CT (pCT).

In order to obtain a pCT image, every proton must be tracked and their residual energy mea-
sured to calculate the energy lost through the patient. The Proton Radiotherapy Verification and
Dosimetry Applications (PRaVDA) Consortium, funded by theWellcome Trust, are developing
a proof of principle instrument which would allow a pCT to be obtained using a fully solid state
device. The PRaVDA device will use four banks of silicon tracking sensors, two before and two
after the patient, to measure the proton direction and calculate the angle of deflection through the
patient [7]. The residual energy of the proton will then be measured in aRange Telescope (RT)
which is a stack of large scale CMOS Active Pixel Sensors (APS). The residual energy of the pro-
ton can be measured by identifying the final layer in which theproton is detected and converting
this to a water equivalent path length. The RT will be highly pixelated in the sensor plane and as
such will be able to track multiple particles simultaneously, reducing the time required to obtain a
pCT. The instrument is designed to track and measure protonsat a rate of more than 1M/s, leading
to a total scan time in the order of minutes.

In this paper, we demonstrate the ability of large scale CMOSAPSs to measure the signal size
of the protons as they travel through the RT and compare the results with theoretical models. In
the final reconstruction this additional information wouldallow us to interpolate between layers
and reduce the uncertainty on the proton range. The paper is structured as following: an overview
of the CMOS used for this study is given in section2, the experiments are outlined in section3,
and the clustering algorithm to identify protons is explained in section4. Results are presented in
section5 and further discussed in section6. Finally, our conclusions are stated in section7.

2 The DynAMITe sensor

For this study the protons were detected using the Dynamic range Adjustable for Medical Imaging
Technology (DynAMITe) sensor [8]. DynAMITe is a radiation hard CMOS APS [9] constructed
in a 0.18µm CMOS process with a total active area of 12.8× 12.8 cm2 developed by the MI-
3 Plus consortium. The pixel array consists of two imagers, the Pixel (P) camera with 100µm
pixel pitch and the Sub-Pixel (SP) camera with 50µm pixel pitch, superimposed on top of each
other. The epitaxial layer of the sensor is 12µm thick on a silicon substrate yielding a total wafer
thickness of 725µm.

When a charged particle interacts with the sensitive regionof DynAMITe it deposits energy
via ionisation, the free electrons are then collected via diffusion at a photodiode. The signal size is
expressed in term of Digital Number (DN) and previous studies have show a gain within the sensor
of 50 e−/DN [8].

The work presented here utilised the low noise, higher spatial resolution SP camera. A rolling
shutter is used to sequentially read out each row of the sensor. A read out rate of approximately
1400 frames/s was achieved by coupling the rolling shutter with the ability to read out a small
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region of interest within the sensor (in this study the central 10 rows). The high frame rate was
required to record each individual proton within the beam. Previous studies with DynAMITe had
primarily focused on testing with light sources. More recently, the identification of a proton signal
has been demonstrated [10]. Here we analyse further the potential of the sensor to reconstruct the
signal caused by protons across a range of energies, corresponding to those which will be observed
in the RT to demonstrate that it is suitable for this purpose.

3 Experiments

Two experimental locations were used to collect the data forthis paper. The MC40 cyclotron at
the University of Birmingham was used for proton energies below 36 MeV and the iThemba LABS
cyclotron allowed protons with energy up to 191 MeV to be studied. Both experiments relied upon
having a very low proton fluence to ensure that there was minimal pile-up in the sensor and allowed
us to study indivdual protons.

3.1 University of Birmingham cyclotron

The proton source at the University of Birmingham is a Scanditronix MC40 cyclotron. The cy-
clotron is capable of producing beams of protons with a wide range of energies (3–38 MeV) with
an energy spread (defined as the FWHM of the energy distribution) of 0.1 MeV. The cyclotron can
deliver proton currents ranging from pA toµA. The protons are deflected into a large vault where
experimental equipment can be housed. It is possible to achieve a beam of 50 mm diameter in this
vault by defocusing the proton beam using quadrupole magnets located approximately 3 m from
the end of the vacuum beampipe nozzle.

A BP was reconstructed to precisely determine the energy of the proton beam. The charge
collected over a 20 s period by a Markus Chamber [11] was recorded with various thicknesses of
Perspex before the chamber. The proton current before the Perspex was measured using a PTW
7862 Ionization Chamber [12] located 1 cm from the nozzle and allowed fluctuations in the beam
current to be accounted for. The ratio of charge in the MarkusChamber to the Ionization Chamber
as a function of depth in Perspex is shown in figure1. Superimposed on top of the BP measurements
in figure 1 is a simulated BP from the bhamBeamline1 simulation developed using the Geant4
toolkit [13]. The agreement between data and simulation is maximised with a beam energy at
source of 36.3±0.2 MeV.

The sensor was initially aligned by acquiring data with a high current (nA rather than pA)
beam, and full frame readout of the sensor. The 10 rows which corresponded to the beam spot
centre were then selected to allow fast read out for the remainder of the experiment. A current of
10 pA as measured in the ionisation chamber, corresponding to a proton current 0.06 pA, was then
incident upon a DynAMITe sensor. The energy of the proton beam was degraded using Perspex
to allow the signal sizes within the sensor to be evaluated both in the plateau region and the peak
of the BP. The Perspex degraders used are listed in table1 alongside the expected proton energy
(also shown in figure1) at the sensor surface, extracted from a simulation with intial parameters
matching those given above.

1A validated Monte Carlo simulation of the Birmingham Cyclotron beam line.
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Figure 1. Bragg Peak of the 36 MeV proton beam, the BP measurements areshown as black crosses where
the length on the cross corresponds to the experimental error, the simulated BP is the dashed black line and
the red line is the simulated proton energy at various depthsthrough the PMMA.

Table 1. The thicknesses of Perspex used during experiments at Birmingham and the mean energy of protons
at the sensor surface obtained from Monte Carlo simulations.

Depth [mm] 0.000 3.903 9.385 9.550 9.645 9.899

Energy [MeV] 35.3 27.3 9.4 8.4 7.8 5.9

3.2 iThemba LABS proton source

The iThemba LABS has a clinical proton beam used to treat patients with head and neck cancers.
At the isocentre the beam has a maximum range of 240 mm in water(corresponding to 191 MeV).
The range of the beam can be degraded down to 30 mm (55 MeV) using two Graphite wedges,
inserted into the beam upstream of the final collimator. The main cyclotron at iThemba is fed by a
smaller cyclotron which contains the ion source. For this work we usedion source 2as it allowed
proton currents, measured on a Faraday Cup prior to the beam nozzle, down to 0.01nA compared
to the typical currents of 100 nA fromion source 1, the clinical ion source.

Two DynAMITe sensors were stacked together with 5 mm of aluminium between the sensors
and their readout clocks synchronised. A high current (few nA) beam was passed through the
stack of sensors to allow the sensors to be aligned. The 10 rows that corresponded to the centre of
the beam spot in each sensor were selected independently as to read out the same protons in both
sensors. The beam current was then reduced to 200 pA and multiple frames captured from both
sensors. The use of two sensors allowed the energy deposition to be studied for protons of 55 MeV
in the first sensor and 41.5 MeV in the sensor behind the aluminium2 simultaneously.

2The energy loss through 5 mm aluminium was evaluated via a Geant4 simulation using realistic input beam param-
eters for the iThemba LABS proton beam.
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4 Clustering algorithm

Every frame collected by the sensor was stored as an image filecontaining the pixel value for all
pixels which were read out. Each frame can contain any combination of the following: signal
hits; hits due to random noise; signals which contain noise;signals which are not fully contained
within the ROI; dead pixels; potential non-uniform responses, and artifacts from radiation dam-
age. The proton signals were identified and noise suppressedwithin these frames using a double
threshold technique. The clustering algorithm was developed using libraries from Scientific Python
(SciPy) [14].

A high threshold,T1, of 19 DN3 was applied across the whole sensor and pixels below this
value were assigned a value of 0 DN. The images were scanned for regions where multiple pixels
with non zero values shared a common edge and these pixels were clustered together. The pixel in
each cluster with the largest DN was identified as the clusterseed. A low threshold, corresponding
to half the initial threshold,T2, was applied to the eight neighbouring pixels around the cluster seed
and the pixels which passedT2 were added to the cluster seed. The sum of the signal in all of
the pixels of the new cluster (cluster value) was then found,alongside the number of pixels in the
cluster (cluster size). The use of the lower threshold allowed for the collection of charge which
may have diffused into neighbouring pixels whilst the random noise signals were suppressed by
the higher threshold. The locations of the clusters were then cross checked against maps of dead
pixels, artifacts, and edge pixels to ensure that the clusters were at least one pixel clear of these to
ensure the whole signal was collected.

5 Results

The clustering algorithm, outlined in section4, was applied to the data, leading to the distributions
of cluster value as shown in figure2. The error bars on the data represent the statistical uncertainty
due to the low proton currents. The energy deposition of highenergy particles through thin layers
follows a Landau distribution [15]. As the ratio between the particle energy and the thicknessof the
layer decreases the deposition becomes more Gaussian in shape. The higher energy data, taken at
iThemba, was fitted with a Landau distribution and the lower energy data with a Gaussian as can be
seen in figure2. The signal size was taken to be the Most Probable Value (MPV)of the Landau fits,
and the mean of the Gaussian distributions. Cluster values below 100 DN were excluded from the
Landau fits as these clusters are associated with secondary particles, originating from interactions
with the collimators, hitting the sensor. IfT1 was raised from 19 DN to 30 DN, whilst keepingT2 at
10 DN, these clusters are removed from the 55 MeV data (not shown in the figure). However, the
fit results are unchanged and a value forT1 of 19 DN was used for consistency.

The measured signal size as a function of proton energy can beseen in figure3. The error
bars on the data increase as the proton energy decreases due to a combined effect of a reduced
fluence through the Perspex and a spreading in the beam energydue to range straggling. The signal
sizes in figure3 are compared with the theoretical proton stopping powers insilicon as tabulated
by SRIM [16], NIST [17] and a modified version of the TestEm0 example code released with

3A threshold of 19 DN corresponds to approximately 3.5 times the noise in a sensor which was shielded from light
and yielded a noise rate of just 2 hits/frame across the wholesensor during the Birmingham experiments.
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Figure 2. Cluster values obtained when applying the clustering algorithm to the data for various proton
energies. The 55.0 MeV and 41.5 MeV data was taken at the iThemba LABS, energies below this were
obtained at the University of Birmingham. The lines of best fit to data are also displayed.

Geant4. The stopping powers are expressed in terms of the Linear Energy Transfer (LET) in units
of keV/µm. The change in observed signal size is in excellent agreement with the theoretical values
for the LET. This demonstrates the ability of the CMOS sensorto distinguish the charge deposited
by protons across a range of energies.
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Figure 3. A comparison between the signal size detected in the DynAMITe sensor and the expected LET
values from SRIM (red), NIST (blue), and Geant4 (green).

6 Discussion

The principle of using a RT to infer the residual energy of theproton is well established within
proton radiography and tomography. However, the use of pixelated detectors in the PRaVDA RT
is a novel approach which will allow the trajectory of each proton to be tracked until it stops.
The ability to identify and track protons between two layersof CMOS has been demonstrated in
previous work [10] and the PRaVDA RT will be capable of simultaneously tracking 1000 proton
with minimal ambiguity. In this paper we have demonstrated the ability of a CMOS APS to measure
an increased signal as the proton energy falls in line with theoretical models. Here we will discuss
the implications of this and illustrate the benefits to the PRaVDA RT and the reconstruction of a
pCT over a simple binary readout RT.

A single layer of the PRaVDA RT would have a water equivalent thickness (WET) of 1.34 mm
and the RT will initially consist of 24 layers, yielding a total WET of the RT of 32.2 mm. Perspex
sheets can be added to the RT to increase the WET and the current configuration of the PRaVDA RT
will interleave 1 mm tiles of Perspex inbetween the CMOS layers. The reconstructed proton range
in the RT will therefore be a WET corresponding to the final layer in which a signal is observed plus
half the WET of a single CMOS plus the Perspex. The additionalsignal information per layer will
allow an improved interpolation between the final two layersby extrapolating the signal size from
multiple layers at known distances to an end point of a BP. A reduction in the uncertainty associated
with the measured range will improve the energy reconstruction and improve the measurement of
the stopping powers.

Should a proton undergo an inelastic nuclear interaction the range of the proton would be
mis-reconstructed and the pCT image will be degraded. Thereare two scenarios where this could
happen in the PRaVDA RT: (1) the proton undergoes an inelastic interaction within the sensitive
region of a layer or (2) the proton undergoes an inelastic interaction in the insensitive region such
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as the bulk silicon or Perspex. As a nuclear interaction willlead to a significantly increased signal
in the sensor the first scenario can easily be handled by identifying an increased signal size in the
sensor and applying cuts to the data. Spatial information from the PRaVDA RT will be used to
reduce the impact from the second scenario. The range of protons in a specific spatial region will
vary due to range straggling but events with a significantly reduced range when accounting for this
can be removed. This will be studied in more detail in future work.

Geant4 was originally developed for use in High Energy Physics and is primarily validated at
higher energies than those used for proton radiotherapy. The excellent agreement between the LET
spectrum extracted from Geant4 and the data demonstrates that the Monte Carlo software is able
predict the behaviour of the energy deposition in the CMOS sensors, allowing a full scale detector
simulation to be developed with confidence in its results. Algorithms are currently being developed
which incorporate the additional signal size information into the final proton track reconstruction
and the simulation will allow the performance of these algorithms to be evaluated prior to the
availability of a completed RT.

The full scale model of the PRaVDA RT as outlined above has demonstrated a resolution on
the reconstructed energy of 2.2% for protons with an energy between 50 MeV and 60 MeV and a
maximum contained energy of∼ 90 MeV. The main alternative technology to measure the residual
proton energy in other prototype pCT systems are scintillators [18]. These systems consist of either
crystals which fully contain the proton or multiple plasticscintillators stacked together to form a RT.
A resolution of 4% at FWHM at 62 MeV was observed by the PRIMA Collaboration using YAG:Ce
crystals with a maximum acquisition rate of 1000 protons persecond [19]. The AQUA program
have demonstrated a resolution of 1.7 mm at 99.7 MeV in a RT consisting of plastic scintillators
with an acquisition rate of 10000 protons per second [20]. The performance of the PRaVDA RT is
therefore favourable to these devices with an improved energy resolution (which could further be
improved using the ability to measure the signal sizes in theCMOS) and faster acquisition rate. The
increased data acquisition rates will lead to a patient receiving a pCT scan in a reasonable clinical
time of just a few minutes without performance degradation and image artefacts introduced by pile
up events and ambiguities in assigning a proton energy measured by the RT to the wrong track.

It is clear that both scintillator slabs and layers of solid state detectors are suitable technologies
for a range telescope. The precise 3-dimensional tracking of the path of each individual proton
until it stops, however, is a feature of only the latter and isa unique approach to the pCT problem.
Also, with sufficient radiation-hardness, a RT could also beused as a proton-integrating detector
to image the treatment beam for QA at high beam currents. These points demonstrates the unique
possibilities of our design and makes the development of a solid state RT, as proposed by PRaVDA,
worth examining further.

7 Conclusion

We have demonstrated the ability of a CMOS device to measure the signal size of individual protons
at a range of energies corresponding to those within the PRaVDA RT. The ability to measure a
signal of varying size within the sensors of the RT will allowthe proton range to be interpolated
between layers and thus reduce the uncertainty on the range of the protons. This information will
contribute to the accurate tracking of multiple protons simultaneously and reduce the time to obtain
a pCT to acceptable levels for a clinical device.
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