18,821 research outputs found

    Convective instabilities in two superposed horizontal liquid layers heated laterally

    Get PDF
    This work is devoted to the theoretical study of the stability of two superposed horizontal liquid layers bounded by two solid planes and subjected to a horizontal temperature gradient. The liquids are supposed to be immiscible with a nondeformable interface. The forces acting on the system are buoyancy and interfacial tension. Four different flow patterns and temperature profiles are found for the basic state. A linear perturbative analysis with respect to two and three dimensional perturbations reveals the existence of three kind of patterns. Depending on the relative height of both liquids several situations are predicted: either wave propagation from cold to the hot regions, or waves propagating in the opposite direction or still stationary longitudinal rolls. The behavior of three different pairs of liquids which have been used in experiments on bilayers under vertical gradient by other authors have been examined. The instability mechanisms are discussed and a qualitative interpretation of the different behaviors exhibited by the system is provided. In some configurations it is possible to find a codimension-two point created by the interaction of two Hopf modes with different frequencies and wavenumbers. These results suggest to consider two liquid layers as an interesting prototype for the study of propagation and interaction of waves in the context of the B\'enard-Marangoni problem.Comment: 21 pages, 9 figures, 2 tables;accepted to be published in PR

    Gluino zero-modes for non-trivial holonomy calorons

    Get PDF
    We couple fermion fields in the adjoint representation (gluinos) to the SU(2) gauge field of unit charge calorons defined on R^3 x S_1. We compute corresponding zero-modes of the Dirac equation. These are relevant in semiclassical studies of N=1 Super-symmetric Yang-Mills theory. Our formulas, show that, up to a term proportional to the vector potential, the modes can be constructed by different linear combinations of two contributions adding up to the total caloron field strength.Comment: 17 pages, 3 Postscript figures, late

    Perfect Sampling with Unitary Tensor Networks

    Get PDF
    Tensor network states are powerful variational ans\"atze for many-body ground states of quantum lattice models. The use of Monte Carlo sampling techniques in tensor network approaches significantly reduces the cost of tensor contractions, potentially leading to a substantial increase in computational efficiency. Previous proposals are based on a Markov chain Monte Carlo scheme generated by locally updating configurations and, as such, must deal with equilibration and autocorrelation times, which result in a reduction of efficiency. Here we propose a perfect sampling scheme, with vanishing equilibration and autocorrelation times, for unitary tensor networks -- namely tensor networks based on efficiently contractible, unitary quantum circuits, such as unitary versions of the matrix product state (MPS) and tree tensor network (TTN), and the multi-scale entanglement renormalization ansatz (MERA). Configurations are directly sampled according to their probabilities in the wavefunction, without resorting to a Markov chain process. We also describe a partial sampling scheme that can result in a dramatic (basis-dependent) reduction of sampling error.Comment: 11 pages, 9 figures, renamed partial sampling to incomplete sampling for clarity, extra references, plus a variety of minor change

    Tensor network states and algorithms in the presence of a global SU(2) symmetry

    Full text link
    The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g. with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely (i) [Phys. Rev. A 82, 050301 (2010)] and (ii) [Phys. Rev. B 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible and multiplicity free, acting as a global internal symmetry. Then in (ii) we described the practical implementation of Abelian group symmetries. In this paper we describe the implementation of non-Abelian group symmetries in great detail and for concreteness consider an SU(2) symmetry. Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multi-scale entanglement renormalization ansatz and apply it to study the low energy spectrum of a quantum spin chain with a global SU(2) symmetry.Comment: 32 pages, 37 figure

    Detection of Symmetry Protected Topological Phases in 1D

    Full text link
    A topological phase is a phase of matter which cannot be characterized by a local order parameter. It has been shown that gapped phases in 1D systems can be completely characterized using tools related to projective representations of the symmetry groups. We show how to determine the matrices of these representations in a simple way in order to distinguish between different phases directly. From these matrices we also point out how to derive several different types of non-local order parameters for time reversal, inversion symmetry and Z2Ă—Z2Z_2 \times Z_2 symmetry, as well as some more general cases (some of which have been obtained before by other methods). Using these concepts, the ordinary string order for the Haldane phase can be related to a selection rule that changes at the critical point. We furthermore point out an example of a more complicated internal symmetry for which the ordinary string order cannot be applied.Comment: 12 pages, 9 Figure

    Pinworms of the red howler monkey (Alouatta seniculus) in Colombia. Gathering the pieces of the pinworm-primate puzzle

    Get PDF
    Pinworms of primates are believed to be highly host specific parasites, forming co-evolutionary associations with their hosts. In order to assess the strength and reach of such evolutionary links, we need to have a broad understanding of the pinworm diversity associated with primates. Here, we employed an integrative taxonomic approach to assess pinworm diversity in red howler monkeys in Colombia. Molecular and morphological evidence validate the presence of at least four different species of Trypanoxyuris occurring in red howler monkeys: T. minutus, a widely distributed species, and three new species, T. seunimiii n. sp., T. kemuimae n. sp. and T. kotudoi n. sp. The mitochondrial COI gene and the 28S ribosomal gene were used for phylogenetic assessments through Bayesian inference. The three new species were morphologically distinct and formed reciprocally monophyletic lineages. Further molecular lineage subdivision in T. minutus and T. kotudoi n. sp. without morphological correspondence, suggests the potential scenario for the existence of cryptic species. Phylogenetic relationships imply that the different species of Trypanoxyuris occurring in each howler monkey species were acquired through independent colonization events. On-going efforts to uncover pinworm diversity will allow us to test the degree of host specificity and the co-phylogenetic hypothesis, as well as to further unravel the primate-pinworm evolutionary history puzzle

    Limitations of quantum computing with Gaussian cluster states

    Full text link
    We discuss the potential and limitations of Gaussian cluster states for measurement-based quantum computing. Using a framework of Gaussian projected entangled pair states (GPEPS), we show that no matter what Gaussian local measurements are performed on systems distributed on a general graph, transport and processing of quantum information is not possible beyond a certain influence region, except for exponentially suppressed corrections. We also demonstrate that even under arbitrary non-Gaussian local measurements, slabs of Gaussian cluster states of a finite width cannot carry logical quantum information, even if sophisticated encodings of qubits in continuous-variable (CV) systems are allowed for. This is proven by suitably contracting tensor networks representing infinite-dimensional quantum systems. The result can be seen as sharpening the requirements for quantum error correction and fault tolerance for Gaussian cluster states, and points towards the necessity of non-Gaussian resource states for measurement-based quantum computing. The results can equally be viewed as referring to Gaussian quantum repeater networks.Comment: 13 pages, 7 figures, details of main argument extende
    • …
    corecore