68 research outputs found

    Search for genetic factors predisposing to atherogenic dyslipidemia

    Get PDF
    BACKGROUND: Atherogenic dyslipidemia (AD) is a common feature in persons with premature coronary heart disease. While several linkage studies have been carried out to dissect the genetic etiology of lipid levels, few have investigated the AD lipid triad comprising elevated serum triglyceride, small low density lipoprotein (LDL) particles, and reduced high density lipoprotein (HDL) cholesterol levels. Here we report the results of a whole-genome screen for AD using the Framingham Heart Study population. RESULTS: Our analyses provide some evidence for linkage to AD on chromosomes 1q31, 3q29, 10q26, 14p12, 14q13, 16q24, 18p11, and 19q13. CONCLUSION: AD susceptibility is modulated by multiple genes in different chromosomes. Our study confirms results from other populations and suggests new areas of potential importance

    Genome-wide screen for heavy alcohol consumption

    Get PDF
    BACKGROUND: To find specific genes predisposing to heavy alcohol consumption (self-reported consumption of 24 grams or more of alcohol per day among men and 12 grams or more among women), we studied 330 families collected by the Framingham Heart Study made available to participants in the Genetic Analysis Workshop 13 (GAW13). RESULTS: Parametric and nonparametric methods of linkage analysis were used. No significant evidence of linkage was found; however, weak signals were identified in several chromosomal regions, including 1p22, 4q12, 4q25, and 11q24, which are in the vicinity of those reported in other similar studies. CONCLUSION: Our study did not reveal significant evidence of linkage to heavy alcohol use; however, we found weak confirmation of studies carried out in other populations

    China and the changing economic geography of coffee value chains

    Get PDF
    For the past three centuries, the economic geography of the global coffee sector has been characterized by the supply of beans from tropical countries for consumption in North America and Europe, with various modes of value chain coordination enacted by lead firms to ensure reliable and affordable supply. This pattern is now fundamentally changing, with growth in coffee consumption in emerging markets, including China, exceeding that in established markets. But China is not only a growing consumer market, it is less well known that rapidly increasing agricultural production in Yunnan province of southwest China has also inserted the country as an important source region for coffee, and this has been pivotal in facilitating the emergence of Chinese lead firms in the sector. This article presents the emergence of China, and Chinese firms, at a critical juncture for the structure and governance of the global value chain for coffee. The processes through which this is occurring are outlined, and the implications for regional development prospects across Southeast Asia are discussed. We argue that the changing economic geography of coffee value chains, and their increasing driven-ness by Chinese actors, is starting to reshape the regional coffee industry in profoundly new ways

    Can AMP induce sputum eosinophils, even in subjects with complete asthma remission?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The definition of <b>"</b>clinical asthma remission" is based on absence of symptoms and use of medication. However, in the majority of these subjects airway inflammation is still present when measured. In the present study we investigated whether "complete asthma remission", additionally defined by the absence of bronchial hyperresponsiveness (BHR) and the presence of a normal lung function, is associated with the absence of airway inflammation.</p> <p>Methods</p> <p>Patients with a former diagnosis of asthma and a positive histamine provocation test were re-examined to identify subjects with complete asthma remission (no asthma symptoms or medication, PC<sub>20 </sub>histamine > 32 mg/ml, FEV<sub>1 </sub>> 90% predicted). Patients with PC<sub>20 </sub>histamine ≤ 32 mg/ml were defined as current asthmatics and were divided in two groups, i.e. asthmatics with and without BHR to adenosine 5'monophoshate (AMP). Sputum induction was performed 1 week before and 1 hour after AMP provocation. Sputum induction and AMP provocation were previously shown to be sensitive markers of airway inflammation.</p> <p>Results</p> <p>Seven patients met criteria for complete asthma remission. Twenty-three were current asthmatics, including twelve without hyperresponsiveness to AMP. Subjects with complete asthma remission showed no AMP-induced sputum eosinophilia (median (range) 0.2 (0 - 4.6)% at baseline and 0.2 (0 - 2.6)% after AMP). After AMP, current asthmatics had a significant increase in sputum eosinophils (0.5 (0 - 26.0)% at baseline and 2.6 (0 - 32.0) % after AMP), as had the subgroup of current asthmatics without hyperresponsiveness to AMP (0.2 (0 - 1.8)% at baseline and 1.3 (0 - 6.3)% after AMP).</p> <p>Conclusions</p> <p>Subjects with complete asthma remission, in contrast to subjects with current asthma, do not respond with eosinophilic inflammation in sputum after AMP provocations. These data lend support to the usefulness of the definition of complete asthma remission.</p

    Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1

    Get PDF
    Background: Phototrophy of the extremely halophilic archaeon Halobacterium salinarum was explored for decades. The research was mainly focused on the expression of bacteriorhodopsin and its functional properties. In contrast, less is known about genome wide transcriptional changes and their impact on the physiological adaptation to phototrophy. The tool of choice to record transcriptional profiles is the DNA microarray technique. However, the technique is still rarely used for transcriptome analysis in archaea. Methodology/Principal Findings: We developed a whole-genome DNA microarray based on our sequence data of the Hbt. salinarum strain R1 genome. The potential of our tool is exemplified by the comparison of cells growing under aerobic and phototrophic conditions, respectively. We processed the raw fluorescence data by several stringent filtering steps and a subsequent MAANOVA analysis. The study revealed a lot of transcriptional differences between the two cell states. We found that the transcriptional changes were relatively weak, though significant. Finally, the DNA microarray data were independently verified by a real-time PCR analysis. Conclusion/Significance: This is the first DNA microarray analysis of Hbt. salinarum cells that were actually grown under phototrophic conditions. By comparing the transcriptomics data with current knowledge we could show that our DNA microarray tool is well applicable for transcriptome analysis in the extremely halophilic archaeon Hbt. salinarum. The reliability of our tool is based on both the high-quality array of DNA probes and the stringent data handling including MAANOVA analysis. Among the regulated genes more than 50% had unknown functions. This underlines the fact that haloarchaeal phototrophy is still far away from being completely understood. Hence, the data recorded in this study will be subject to future systems biology analysis

    Plxdc2 Is a Mitogen for Neural Progenitors

    Get PDF
    The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system

    Gene Expression Profiling of Embryonic Human Neural Stem Cells and Dopaminergic Neurons from Adult Human Substantia Nigra

    Get PDF
    Neural stem cells (NSC) with self-renewal and multipotent properties serve as an ideal cell source for transplantation to treat neurodegenerative insults such as Parkinson's disease. We used Agilent's and Illumina Whole Human Genome Oligonucleotide Microarray to compare the genomic profiles of human embryonic NSC at a single time point in culture, and a multicellular tissue from postmortem adult substantia nigra (SN) which are rich in dopaminergic (DA) neurons. We identified 13525 up-regulated genes in both cell types of which 3737 (27.6%) genes were up-regulated in the hENSC, 4116 (30.4%) genes were up-regulated in the human substantia nigra dopaminergic cells, and 5672 (41.93%) were significantly up-regulated in both cell population. Careful analysis of the data that emerged using DAVID has permitted us to distinguish several genes and pathways that are involved in dopaminergic (DA) differentiation, and to identify the crucial signaling pathways that direct the process of differentiation. The set of genes expressed more highly at hENSC is enriched in molecules known or predicted to be involved in the M phase of the mitotic cell cycle. On the other hand, the genes enriched in SN cells include a different set of functional categories, namely synaptic transmission, central nervous system development, structural constituents of the myelin sheath, the internode region of axons, myelination, cell projection, cell somata, ion transport, and the voltage-gated ion channel complex. Our results were also compared with data from various databases, and between different types of arrays, Agilent versus Illumina. This approach has allowed us to confirm the consistency of our obtained results for a large number of genes that delineate the phenotypical differences of embryonic NSCs, and SN cells

    Profiling Trait Anxiety: Transcriptome Analysis Reveals Cathepsin B (Ctsb) as a Novel Candidate Gene for Emotionality in Mice

    Get PDF
    Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait “anxiety”. We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior

    The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports

    Get PDF
    Background: The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies. Methods: Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests. Results: The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http:// www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion: We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.Molecular and Cellular Biolog
    corecore