72 research outputs found

    Ranking diffusion-MRI models with in-vivo human brain data

    Get PDF
    Diffusion MRI microstructure imaging provides a unique non-invasive probe into the microstructure of biological tissue. Its analysis relies on mathematical models relating microscopic tissue features to the MR signal. This work aims to determine which compartment models of diffusion MRI are best at describing the signal from in-vivo brain white matter. Recent work shows that three compartment models, including restricted intra-axonal, glial compartments and hindered extra-cellular diffusion, explain best multi b-value data sets from fixed rat brain tissue. Here, we perform a similar experiment using in-vivo human data. We compare one, two and three compartment models, ranking them with standard model selection criteria. Results show that, as with fixed tissue, three compartment models explain the data best, although simpler models emerge for the in-vivo data. We also find that splitting the scanning into shorter sessions has little effect on the models fitting and that the results are reproducible. The full ranking assists the choice of model and imaging protocol for future microstructure imaging applications in the brain

    Noninvasive diffusion magnetic resonance imaging of brain tumour cell size for the early detection of therapeutic response

    Get PDF
    Cancer cells differ in size from those of their host tissue and are known to change in size during the processes of cell death. A noninvasive method for monitoring cell size would be highly advantageous as a potential biomarker of malignancy and early therapeutic response. This need is particularly acute in brain tumours where biopsy is a highly invasive procedure. Here, diffusion MRI data were acquired in a GL261 glioma mouse model before and during treatment with Temozolomide. The biophysical model VERDICT (Vascular Extracellular and Restricted Diffusion for Cytometry in Tumours) was applied to the MRI data to quantify multi-compartmental parameters connected to the underlying tissue microstructure, which could potentially be useful clinical biomarkers. These parameters were compared to ADC and kurtosis diffusion models, and, measures from histology and optical projection tomography. MRI data was also acquired in patients to assess the feasibility of applying VERDICT in a range of different glioma subtypes. In the GL261 gliomas, cellular changes were detected according to the VERDICT model in advance of gross tumour volume changes as well as ADC and kurtosis models. VERDICT parameters in glioblastoma patients were most consistent with the GL261 mouse model, whilst displaying additional regions of localised tissue heterogeneity. The present VERDICT model was less appropriate for modelling more diffuse astrocytomas and oligodendrogliomas, but could be tuned to improve the representation of these tumour types. Biophysical modelling of the diffusion MRI signal permits monitoring of brain tumours without invasive intervention. VERDICT responds to microstructural changes induced by chemotherapy, is feasible within clinical scan times and could provide useful biomarkers of treatment response

    Impact of SARS-CoV-2 preventive measures against healthcare-associated infections from antibiotic-resistant ESKAPEE pathogens: a two-center, natural quasi-experimental study in Greece

    Get PDF
    The COVID-19 pandemic led to unprecedented stress on healthcare systems worldwide, forming settings of concern for increasing antimicrobial resistance. We investigated the impact of SARS-CoV-2 preventive measures against healthcare-associated infections (HAIs) from antibiotic-resistant bacteria in two tertiary-care hospitals. We compared infection rates between March 2019 and February 2020 (pre-intervention period) and March 2020 and February 2021 (COVID-19 intervention period) from drug-resistant ESKAPEE bacteria (methicillin-resistant Staphylococcus aureus; vancomycin-resistant Enterococci; carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species and Escherichia coli). Over 24 months, 586 drug-resistant ESKAPEE HAIs occurred in 439 patients (0.3% of 179,629 inpatients) with a mean age of 63 years, with 43% being treated in intensive care units (ICUs), and having a 45% inpatient mortality rate. Interrupted time series analysis revealed increasing infection rates before the intervention that were sharply interrupted by abrupt drops for most pathogens and henceforth remained stable in the ICUs but progressively increased in ordinary wards. In the ICUs, the pooled infection rate was 44% lower over the intervention period compared to the pre-intervention period (incidence rate ratio (IRR) 0.56, 95%CI 0.41–0.75, p < 0.001). Pooled infection rates in the wards were slightly higher over the COVID-19 period (IRR 1.12, 95%CI 0.87–1.45, p = 0.368). The findings confirmed the ancillary beneficial impact of the enhanced bundle of transmission-based precautions adopted against SARS-CoV-2 in rapidly constraining antimicrobial-resistant HAIs in two Greek hospitals

    INNOVATE: A prospective cohort study combining serum and urinary biomarkers with novel diffusion-weighted magnetic resonance imaging for the prediction and characterization of prostate cancer

    Get PDF
    BACKGROUND: Whilst multi-parametric magnetic resonance imaging (mp-MRI) has been a significant advance in the diagnosis of prostate cancer, scanning all patients with elevated prostate specific antigen (PSA) levels is considered too costly for widespread National Health Service (NHS) use, as the predictive value of PSA levels for significant disease is poor. Despite the fact that novel blood and urine tests are available which may predict aggressive disease better than PSA, they are not routinely employed due to a lack of clinical validity studies. Furthermore approximately 40% of mp-MRI studies are reported as indeterminate, which can lead to repeat examinations or unnecessary biopsy with associated patient anxiety, discomfort, risk and additional costs. METHODS AND ANALYSIS: We aim to clinically validate a panel of minimally invasive promising blood and urine biomarkers, to better select patients that will benefit from a multiparametric prostate MRI. We will then test whether the performance of the mp-MRI can be improved by the addition of an advanced diffusion-weighted MRI technique, which uses a biophysical model to characterise tissue microstructure called VERDICT; Vascular and Extracellular Restricted Diffusion for Cytometry in Tumours. INNOVATE is a prospective single centre cohort study in 365 patients. mpMRI will act as the reference standard for the biomarker panel. A clinical outcome based reference standard based on biopsy, mp-MRI and follow-up will be used for VERDICT MRI. We expect the combined effect of biomarkers and VERDICT MRI will improve care by better detecting aggressive prostate cancer early and make mp-MRI before biopsy economically viable for universal NHS adoption. ETHICS AND DISSEMINATION: INNOVATE received UK Research Ethics Committee approval on 23rd December 2015 by the NRES Committee London—Surrey Borders with REC reference 15/LO/0692. REGISTRATION DETAILS: INNOVATE is registered on ClinicalTrials.gov, with reference NCT0268927

    Histological Validation of in-vivo VERDICT MRI for Prostate using 3D Personalised Moulds

    Get PDF
    VERDICT analysis can successfully distinguish benign from malignant prostate tissue in-vivo showing promising results as a cancer diagnostic tool. However, the accuracy with which model parameters reflect the underlying tissue characteristics is unknown. In this study, we quantitatively compare the intracellular, extracellular-extravascular and vascular volume fractions derived from in-vivo VERDICT MRI against histological measurements from prostatectomies. We use 3D-printed personalised moulds designed from in-vivo MRI that help preserve the orientation and location of the gland and aid histological alignment. Results from the first samples using the 3D mould pipeline show good agreement between in-vivo VERDICT estimates and histology

    Evaluation of PSA and PSA Density in a Multiparametric Magnetic Resonance Imaging-Directed Diagnostic Pathway for Suspected Prostate Cancer: The INNOVATE Trial

    Get PDF
    OBJECTIVES: To assess the clinical outcomes of mpMRI before biopsy and evaluate the space remaining for novel biomarkers. METHODS: The INNOVATE study was set up to evaluate the validity of novel fluidic biomarkers in men with suspected prostate cancer who undergo pre-biopsy mpMRI. We report the characteristics of this clinical cohort, the distribution of clinical serum biomarkers, PSA and PSA density (PSAD), and compare the mpMRI Likert scoring system to the Prostate Imaging–Reporting and Data System v2.1 (PI-RADS) in men undergoing biopsy. RESULTS: 340 men underwent mpMRI to evaluate suspected prostate cancer. 193/340 (57%) men had subsequent MRI-targeted prostate biopsy. Clinically significant prostate cancer (csigPCa), i.e., overall Gleason ≥ 3 + 4 of any length OR maximum cancer core length (MCCL) ≥4 mm of any grade including any 3 + 3, was found in 96/195 (49%) of biopsied patients. Median PSA (and PSAD) was 4.7 (0.20), 8.0 (0.17), and 9.7 (0.31) ng/mL (ng/mL/mL) in mpMRI scored Likert 3,4,5 respectively for men with csigPCa on biopsy. The space for novel biomarkers was shown to be within the group of men with mpMRI scored Likert3 (178/340) and 4 (70/350), in whom an additional of 40% (70/178) men with mpMRI-scored Likert3, and 37% (26/70) Likert4 could have been spared biopsy. PSAD is already considered clinically in this cohort to risk stratify patients for biopsy, despite this 67% (55/82) of men with mpMRI-scored Likert3, and 55% (36/65) Likert4, who underwent prostate biopsy had a PSAD below a clinical threshold of 0.15 (or 0.12 for men aged <50 years). Different thresholds of PSA and PSAD were assessed in mpMRI-scored Likert4 to predict csigPCa on biopsy, to achieve false negative levels of ≤5% the proportion of patients whom who test as above the threshold were unsuitably high at 86 and 92% of patients for PSAD and PSA respectively. When PSA was re tested in a sub cohort of men repeated PSAD showed its poor reproducibility with 43% (41/95) of patients being reclassified. After PI-RADS rescoring of the biopsied lesions, 66% (54/82) of the Likert3 lesions received a different PI-RADS score. CONCLUSIONS: The addition of simple biochemical and radiological markers (Likert and PSAD) facilitate the streamlining of the mpMRI-diagnostic pathway for suspected prostate cancer but there remains scope for improvement, in the introduction of novel biomarkers for risk assessment in Likert3 and 4 patients, future application of novel biomarkers tested in a Likert cohort would also require re-optimization around Likert3/PI-RADS2, as well as reproducibility testing

    Sprouty4 Is an Endogenous Negative Modulator of TrkA Signaling and Neuronal Differentiation Induced by NGF

    Get PDF
    The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works
    • …
    corecore