93 research outputs found
Epigenetic mechanisms of endocrine-disrupting chemicals in obesity
The incidence of obesity has dramatically increased over the last decades. Recently, there has been a growing interest in the possible association between the pandemics of obesity and some endocrine-disrupting chemicals (EDCs), termed “obesogens”. These are a heterogeneous group of exogenous compounds that can interfere in the endocrine regulation of energy metabolism and adipose tissue structure. Oral intake, inhalation, and dermal absorption represent the major sources of human exposure to these EDCs. Recently, epigenetic changes such as the methylation of cytosine residues on DNA, post-translational modification of histones, and microRNA expression have been considered to act as an intermediary between deleterious effects of EDCs and obesity development in susceptible individuals. Specifically, EDCs exposure during early-life development can detrimentally affect individuals via inducing epigenetic modifications that can permanently change the epigenome in the germline, enabling changes to be transmitted to the next generations and predisposing them to a multitude of diseases. The purpose of this review is to analyze the epigenetic alterations putatively induced by chemical exposures and their ability to interfere with the control of energy metabolism and adipose tissue regulation, resulting in imbalances in the control of body weight, which can lead to obesity
Pro-Inflammatory and Immunological Profile of Dogs with Myxomatous Mitral Valve Disease
Myxomatous mitral valve disease (MMVD) is a very frequently acquired cardiac disease in dog breeds and is responsible for congestive heart failure (CHF). The involvement of the immune system and pro-inflammatory cytokines in dogs with CHF due to mitral valve disease has not yet been extensively investigated. Here, we investigate the role of pro-inflammatory cytokines and the dysfunction of the immune system in dogs with different stages of severity through the blood assessment of CD4+FoxP3+regulatory T cells (Treg) cells, leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 pro-inflammatory cytokines, and immunological and echocardiographic parameters. A total of 36 cardiopathic dogs, 14 females and 22 males, with MMVD were included. Mean age and body weight (BW) at the time of enrollment were 10.7 ± 2.77 years and 10.9 ± 6.69 kg, respectively. For the comparison of the pro-inflammatory and immunological parameters, two groups of healthy dogs were also established. Control group 1 consisted of young animals (n. 11; 6 females and 5 males), whose age and mean weight were 4.1 ± 0.82 years and 13.8 ± 4.30 kg, respectively. Control group 2 consisted of elderly dogs (n. 12; 6 females and 6 males), whose age and BW were 9.6 ± 0.98 years and 14.8 ± 6.15 kg, respectively. Of particular interest, an increase in Treg cells was observed in the cohort of MMVD dogs, as compared to the healthy dogs, as Treg cells are involved in the maintenance of peripheral tolerance, and they are involved in etiopathogenetic and pathophysiological mechanisms in the dog. On the other hand, TNF-α, IL-1β, and IL-6 significantly increased according to the severity of the disease in MMVD dogs. Furthermore, the positive correlation between IL-6 and the left ventricle diastolic volume suggests that inflammatory activation may be involved in cardiac remodeling associated with the progressive volumetric overload in MMVD
Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow
Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are divided into two subclasses: immature regulatory NK CD56(bright) and mature cytotoxic NK CD56(dim). Therefore, the ability to discriminate CD56(dim) from CD56(bright) could be very useful because of their higher cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with interleukine-15 inducing a subclass transition from CD56(bright) to CD56(dim). We trained our ML algorithm with sorted NK cell subclasses (>= 86% accuracy). Next, we applied our NK cell classification algorithm to cells stimulated over time, to investigate the transition of CD56(bright) to CD56(dim) and their biophysical feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of our measurement approach. We show a label-free way for the robust identification of NK cell subclasses based on biophysical features, which can be applied in both cell biology and cell therapy
Superoxide dismutase-1 intracellular content in T lymphocytes associates with increased regulatory T cell level in multiple sclerosis subjects undergoing immune-modulating treatment
Reactive oxygen species (ROS) participate in the T-cell activation processes. ROS-dependent regulatory networks are usually mediated by peroxides, which are more stable and able to freely migrate inside cells. Superoxide dismutase (SOD)-1 represents the major physiological intracellular source of peroxides. We found that antigen-dependent activation represents a triggering element for SOD-1 production and secretion by human T lymphocytes. A deranged T-cell proinflammatory response characterizes the pathogenesis of multiple sclerosis (MS). We previously observed a decreased SOD-1 intracellular content in leukocytes of MS individuals at diagnosis, with increasing amounts of such enzyme after interferon (IFN)-b 1b treatment. Here, we analyzed in depth SOD-1 intracellular content in T cells in a cohort of MS individuals undergoing immune-modulating treatment. Higher amounts of the enzyme were associated with increased availability of regulatory T cells (Treg) prefer-entially expressing Foxp3-exon 2 (Foxp3-E2), as described for effective Treg. In vitro administration of recombinant human SOD-1 to activated T cells, significantly increased their IL-17 production, while SOD-1 molecules lacking dismutase activity were unable to interfere with cytokine production by activated T cells in vitro. Furthermore, hydrogen peroxide addition was observed to mimic, in vitro, the SOD-1 effect on IL-17 production. These data add SOD-1 to the molecules involved in the molecular pathways contributing to re-shaping the T-cell cytokine profile and Treg differentiation
Non-invasive and label-free identification of human natural killer cell subclasses by biophysical single-cell features in microfluidic flow
Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are divided into two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim. Therefore, the ability to discriminate CD56dim from CD56bright could be very useful because of their higher cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with interleukine-15 inducing a subclass transition from CD56bright to CD56dim. We trained our ML algorithm with sorted NK cell subclasses (≥86% accuracy). Next, we applied our NK cell classification algorithm to cells stimulated over time, to investigate the transition of CD56bright to CD56dim and their biophysical feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of our measurement approach. We show a label-free way for the robust identification of NK cell subclasses based on biophysical features, which can be applied in both cell biology and cell therapy
Effect of a Weight Loss Program on Biochemical and Immunological Profile, Serum Leptin Levels, and Cardiovascular Parameters in Obese Dogs
This study aimed to investigate the effects of a weight loss program (WLP) on biochemical and immunological profile, and cardiovascular parameters in a cohort of dogs with naturally occurring obesity. Eleven obese dogs [body condition scoring (BCS), ≥7/9] were enrolled into the study and underwent clinical and cardiovascular examination, and blood testing before (T0) and after 6 months (T1) of WLP. Eleven normal weight (BCS, 4/5) healthy dogs were used as a control (CTR) group. Compared to the CTR group, at T0 obese dogs expressed higher serum leptin concentrations (p < 0.0005) that significantly decreased after weight loss (p < 0.005) but remained higher than the CTR group. Furthermore, obese dogs showed considerably lower levels (p < 0.0005) of regulatory T cell (Treg) compared to the CTR group, but they did not change after weight loss at T1. In obese dogs, tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations were substantially reduced at T1 (p < 0.0001 and p < 0.005). Regarding the cardiovascular parameters, only one obese dog was hypertensive at T0, and systolic blood pressure values showed no significant differences at the end of the WLP. The ratio of interventricular septal thickness in diastole to left ventricle internal diameter in diastole (IVSd/LVIDd) was significantly greater in obese dogs at T0 than in the CTR group (p < 0.005). It decreased after weight loss (p < 0.05). In obese dogs, troponin I level significantly reduced with weight loss (p < 0.05), while endothelin-1 level did not differ statistically. The results suggest that the immune dysregulation in the presence of high leptin levels and reduced number of Treg could affect obese dogs as well as humans. Based on our findings, we may speculate that a more complete immune-regulation restore could be obtained by a greater reduction in fat mass and a longer-term WLP. Finally, left ventricular remodeling may occur in some obese dogs. However, in canine species, further studies are needed to investigate the impact of obesity and related WLP on cardiovascular system
Global compactness results for nonlocal problems
International audienceWe obtain a Struwe type global compactness result for a class of nonlinear nonlocal problems involving the fractional Laplacian operator and nonlinearities at critical growth
Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem
We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB)
equations, i.e. scalar conservation laws with diffusive-dispersive
regularization. We review the existence of traveling wave solutions for these
two classes of evolution equations. For classical equations the traveling wave
problem (TWP) for a local KdVB equation can be identified with the TWP for a
reaction-diffusion equation. In this article we study this relationship for
these two classes of evolution equations with nonlocal diffusion/dispersion.
This connection is especially useful, if the TW equation is not studied
directly, but the existence of a TWS is proven using one of the evolution
equations instead. Finally, we present three models from fluid dynamics and
discuss the TWP via its link to associated reaction-diffusion equations
Sharp constants in weighted trace inequalities on Riemannian manifolds
We establish some sharp weighted trace inequalities
W^{1,2}(\rho^{1-2\sigma}, M)\hookrightarrow L^{\frac{2n}{n-2\sigma}}(\pa M)
on dimensional compact smooth manifolds with smooth boundaries, where
is a defining function of and . This is stimulated
by some recent work on fractional (conformal) Laplacians and related problems
in conformal geometry, and also motivated by a conjecture of Aubin.Comment: 34 page
- …