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Natural killer (NK) cells are indicated as favorite candidates for innovative therapeutic treatment and are

divided into two subclasses: immature regulatory NK CD56bright and mature cytotoxic NK CD56dim.

Therefore, the ability to discriminate CD56dim from CD56bright could be very useful because of their higher

cytotoxicity. Nowadays, NK cell classification is routinely performed by cytometric analysis based on

surface receptor expression. Here, we present an in-flow, label-free and non-invasive biophysical analysis

of NK cells through a combination of light scattering and machine learning (ML) for NK cell subclass

classification. In this respect, to identify relevant biophysical cell features, we stimulated NK cells with

interleukine-15 inducing a subclass transition from CD56bright to CD56dim. We trained our ML algorithm

with sorted NK cell subclasses (≥86% accuracy). Next, we applied our NK cell classification algorithm to

cells stimulated over time, to investigate the transition of CD56bright to CD56dim and their biophysical

feature changes. Finally, we tested our approach on several proband samples, highlighting the potential of

our measurement approach. We show a label-free way for the robust identification of NK cell subclasses

based on biophysical features, which can be applied in both cell biology and cell therapy.

Introduction

Natural killer (NK) cells are physiologically involved in the
immune response against viruses, intra-cellular bacteria,
parasites, and malignant cells. In addition to cytotoxic
activity, NK cells mediate a variety of homeostatic effects by
producing cytokines.1–4 Although long described, the details
of the functional characteristics of NK cells have long been a
mystery. They are a specific lymphocyte type, expressing
several receptors.5 In this regard, NK cells do not express T-
nor B-lymphocyte cell receptors and the activation
mechanism of their functions is not restricted to antigen

presentation by major histocompatibility complex (MHC)
proteins.6 However, since NK cells were identified, in the
1970s, they immediately attracted great interest in biology
and in medical applications.7 Nowadays, we know that NK
cells have infiltrating capability, used to migrate in tumoral
tissue to promote their high cytotoxic activity.8–10 We also
know that two main NK cell functional subclasses exist, and
they can be recognized, basing on the cell surface expression
of the CD56 marker:11 CD56bright (high CD56 expression) and
CD56dim (low CD56 expression).12 In more detail, CD56bright

NK cells produce cytokines, but lack in cytotoxicity, while
CD56dim NK cells have a primary role in cytotoxic function.13

It is also known that CD56bright NK cells are immature and
represent the minority (∼10%) of peripheral blood circulant
NK cells.14–16 Beyond that, other classifications of NK cells
have arisen over the years, also identifying peripheral
subclasses or infiltrating types.17–20 The more the knowledge
on NK became complete, the more their immunological
importance became clear, since a new therapeutic strategy
has been recently hypothesized by selecting the best
performing cytotoxic NK cells to re-infuse them in patients
and maximize the effect of antitumor therapies.21–27 For this
reason, recently, research studies started to focus on the
CD56dim subclass, which shows higher cytotoxic potential. For
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instance, interleukin 15 (IL-15) results in an enhancement of
cytotoxic activities, i.e., a variation of nucleus-ratio in favour
of the cytosol compartment.28–32 In particular, a high
cytotoxic activity of NK cells is of significant interest for
therapies to minimize the effects of graft versus host diseases
(GvHDs) in bone marrow transplants.

However, NK cell subclasses are distinguished by
immunofluorescence approaches, based on a combination of
monoclonal antibodies and flow cytometry.33,34 The
drawbacks and limitations of flow cytometry are
instrumentation and service costs, as well as the high
number of fluorescent antibody types, which are in general
expensive, and suffer from variability during their production
processes. Furthermore, for the execution of
immunofluorescence techniques, specialized operators are
required to correctly interpret the obtained results.35–37

Moreover, monoclonal antibodies against cell surface
molecules may interfere with cell functions. Therefore,
methods to preserve the integrity of cell functions are
desirable when cells are used for therapeutic purposes. Thus,
although molecular characterization by flow cytometry
represents the gold standard technique for the evaluation of
cell classes, there is evidence in the literature that
morphological cell parameters reveal many characteristics of
cells.38–45 For instance, Walsh et al. and Do-Hyun Lee et al.
discovered that cells can be recognized and classified based
on their autofluorescence.46,47 Nassar et al. used bright-field
and fluorescence imaging of white blood cells and classified
them, taking advantage of machine learning,48 while
Isozaki49 and Kim50 took advantage of artificial intelligence
for automatic recognition of cells by acquiring their shape,
structure and substructure. Another interesting application
in this field is digital holographic microscopy,51–53 which
permits a very detailed reconstruction of cell shape, but
requires a high computational cost and long time of analysis.

Acquisition of detailed morphological aspects of cells,
whatever the used technique, is a powerful possibility,
because it supplies early information on the cell state, which
could escape to cytometric analysis, like substructure
anomalies, or the nucleus state (reflecting DNA organization).
Recently, a simple label-free classification of peripheral
human blood stream cells using a self-built small angle light
scattering technique associated with a viscoelastic
microfluidic cell alignment approach was presented.54 In
detail, morphological features of different human cell classes
have been measured: red blood cells,55 lymphocyte
subclasses,56,57 and monocytes.58 No examples of NK cell
identification based on such a paradigm exist in the
literature. Here, we present a novel approach to classify
human NK cell subclasses exclusively based on their
morphological and biophysical aspects obtained via an in-
flow light scattering approach (Fig. 1). We trained a machine
learning (ML) algorithm on sorted NK cell subclasses,
extracting their biophysical cell features (diameter, nucleus
ratio, optical density). Based on such input, we applied the
obtained classification algorithm on physiological NK cells as
well as on mobilized NK cells. Later, NK cells were utilized to
investigate biophysical cell feature changes based on the
classification accuracy. Therefore, we measured mobilized NK
cells after IL-15 stimulation and followed the transition from
CD56bright to CD56dim. However, the generated classification
algorithm is applied to NK suspensions obtained from four
different probands to reveal via scattering measurements the
CD56bright versus CD56dim predictions and associated score
values. Our measurement approach allows the distinct
classification and selection of cytotoxic NK cells and
strengthens the actual knowledge on these fundamental
classes of cells. More importantly, we show a potential way to
properly identify mobilized NK cells destined for therapeutic
purposes, which could be done by implementing appropriate

Fig. 1 Overview of the experimental approach. A cell suspension is 3D-aligned in a round shaped channel before entering a square shaped
readout channel, where single cell investigation takes place. From the obtained scattering pattern, biophysical cell features are extracted and used
for training of the ML classification algorithm. The generated classification algorithm is applied to NK cell suspensions obtained from a patient to
reveal via scattering measurements the CD56bright versus CD56dim predictions and associated score values. Afterwards, the obtained CD56dim could
be potentially used for re-infusion in a patient.
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sterility protocols to the whole approach, potentially used for
re-infusion into patients.

Materials and methods
Experimental protocols

We investigated peripheral blood mononuclear cells (PBMCs),
which were obtained from four healthy donor buffy coats
obtained from the blood bank of the medical school of the
Federico II University of Naples (Italy). At the time of blood
donation, each donor signed an informed consent (model
no. 5526 of Azienda Ospedaliera Universitaria “FEDERICO
II”, Naples, Italy) in which it is specified that waste parts of
the blood (buffy coats), not useful for the medical–
therapeutic purposes of blood donation, could be used for
scientific research purposes. All the experiments were
performed and analysed anonymously, without any
biographical reference to the donors.

PBMCs were collected using standard density gradient
centrifugation, with some adaptation to reduce platelet
contaminations.59 Briefly, a blood sample was gently layered
on an equal volume of density gradient fluid (Ficoll) and
centrifuged at 300g→ for 45 minutes (without brake). The
PBMC ring stratified at the interface between Ficoll and
plasma was collected using a Pasteur pipette and washed
twice with RBC lysis solution to eliminate possible
erythrocyte contaminations of the sample.60,61 After
separation, the PBMCs were washed and incubated in full
medium – 5 ml of RPMI (Euroclone), 10% FBS (Sigma
Aldrich), and 1% pen–strep (Sigma Aldrich) – in a
horizontally placed plastic flask, for two hours at 37 °C and
5% CO2 to remove adherent cells.

Multiparametric flow cytometry was used to evaluate the
percentage of T-lymphocytes (CD3+ CD56−) and NK cells
(CD3− CD56+) in the whole PBMC cell population. In
particular, FITC anti-human CD3 (BD Pharmingen, UCHT1
clone) and APC anti-human CD56 (BD Biosciences,
NCAM16.2 clone) monoclonal antibodies were used and
analysed using an Attune NxT (Life Technologies, Thermo
Fisher, Italy) cytometer apparatus.62 To separate the
CD56bright and CD56dim NK cell subclasses, a subsequent
high-performance cell sorting was performed (BD FACS-Jazz,
BD Bioscience, Sorting Facility of Istituto per l'Endocrinologia
e l'Oncologia Sperimentale “G. Salvatore”, Consiglio
Nazionale delle Ricerche, Naples 80131, Italy), after staining
with APC anti-human CD56 (BD Biosciences, NCAM16.2
clone) monoclonal antibodies.62

A second investigation was performed on a sample of
mobilized NK cells obtained from the Santobono-Pausilipon
Hospital, Department of Pediatric Hemato-Oncology, where
PBMCs of a healthy donor were mobilized with 10 μg kg−1

G-CSF. The sample was taken after obtaining informed
consent from the donor in accordance with relevant
guidelines and regulations. The experimental protocol was
approved by a licensing committee (EU clinical trial register –
EudraCT Number: 2007-004270-43). The donor gave informed

consent to publish identifying information. Out from such
mobilized PBMCs, NK cell subclasses were selected through
continuous immunomagnetic selection. The mobilized NK
cells were stimulated with 100 ng ml−1 IL-15 and the
morphometric evolution over experiment time was
investigated. Therefore, we incubated cells in a T25 flask (1 ×
106 cells) in full medium at controlled ambience (37 °C, 5%
CO2) for up to 120 hours. We performed measurements at six
subsequent time steps: 0 h, 24 h, 48 h, 72 h, 96 h and 120 h.
At each step, we collected 1–3 ml of sample volume according
to the different time steps (∼150 000 cells at each time step)
and added fresh medium equivalent to the undrawn one.
The collected sample was centrifuged at 200g→ for 10 minutes,
the supernatant was discarded, and the remaining cell pellet
was resuspended in viscoelastic cell alignment medium.

Microfluidic device and cell alignment

Measurements were performed with a microfluidic device,
composed of a supporting geometry fabricated with a 3D
printer (Objet30 pro, Stratasys) and a series of glass channels.
Briefly, a round shaped channel (TSP050375, Molex) – where
3D alignment of cells takes place – is inserted in a square
shaped readout channel (8240, Vitrocom) – where single cell
investigation takes place – which permits the precise inflow
optical readout of cells. Cells are immersed in an alignment
medium, consisting of a highly biocompatible viscoelastic
polymer (polyethylene oxide, PEO MW = 4 MDa, Sigma
Aldrich) diluted in phosphate-buffered saline (PBS, Sigma
Aldrich) at 0.4 wt%. Thanks to the resulting fluid properties,
generated by viscoelastic fluid forces, cells are aligned to the
centreline of the round shaped channel and subsequently
remain aligned in the centreline of the microfluidic readout
channel.62,63 Note that fluid forces have been chosen to
prevent cell deformation effects, while ensuring sufficient cell
alignment. In more detail, one end of the round shaped
channel is immersed in the cell sample: by applying a certain
pressure on the sample, the cell medium is pushed through
the channel and enter the microfluidic device. Cell alignment
to the channel centreline is achieved if the following
relationships of Θ is satisfied:

Θ ¼ 3Wiβ2
L
2R

> − ln 3:5βð Þ;

with Wi = 2λŪ/2R, where λ is the relaxation time (0.197 ms) of

the viscoelastic fluid, Ū is the average fluid velocity (1496 μm
s−1), R is the channel radius (25 μm), β = r1/R, a non-
dimensional geometrical channel parameter, with r1 being
the cell radius, and L is the channel length (0.35 m).62,64 The
subsequent readout channel allows precise single cell
analysis due to its square shape of 400 × 400 μm and
preserved centreline alignment. To assure continuity between
the alignment and readout channel, the alignment section is
collinearly inserted in the readout section and sealed with a
soft ferrule (UP-N-123-03X, IDEX). At the end of the readout
channel, cells are recovered for further studies.
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Light scattering and machine learning approach

We used a measurement approach, which can obtain precise
single cell scattering information in a continuous angular
range from 2° up to 30°, with an angular resolution of 0.1°.
Briefly, cells flowing in the readout channel pass through a
collimated laser beam (λ = 450 nm), and the scattered light is
collected and mapped on a camera sensor (ORCA Flash 4.0,
Hamamatsu). The hereby-obtained scattering signatures are
processed to obtain a light-scattering profile (LSP). The LSP is
used to retrieve the biophysical features of each single NK
cell. In more detail, collected LSPs are matched with a look-
up table (≥330 000 curves) of previously calculated theoretical
scattering profiles to retrieve biophysical cell features and to
distinguish morphological properties within the sub-
micrometric range. More detailed information about the LSP
matching is shown elsewhere.54,65

We prepared cell samples of approximately 1.25 × 105 cells
per mL to ensure a throughput rate of ∼2 cells per s passing
through the readout laser beam. Please note that the sample
concentration and fluid velocities were optimized to reduce
possible cell–cell interactions and cell deformation effects.
The maximum throughput performance of the actual
measurement approach is ∼50 cells per s. However, the ML
approach was implemented with the commercial software
MATLAB (R2020b, MathWorks) to classify CD56bright cells
from CD56dim cells, as well as the main subclasses of PBMCs
based on biophysical features retrieved from the
experimental scattering patterns. For CD56bright versus
CD56dim identification, the ML makes a binary classification
and associates the prediction score, which allows
interpretation of the classification accuracy. Note that a high
score value indicates a high cell classification accuracy. The
ML results are shown in a 2 × 2 matrix, with the following
values: TPR, true positive rate and FNR, false negative rate
versus CD56bright and CD56dim input data.

Vitality tests

Before and after each cell measurement, a small cell fraction
was observed with an inverted bright-field microscope (100×
objective, X81, Olympus), to check their morphological
aspects, and to verify the absence of significant membrane
damage. In addition, we estimate the rate of cell death (20×
objective, BX53, Olympus), performing a ‘Trypan blue’ test.
Moreover, cells were observed with a confocal microscope
(63× objective, LSM 710, Zeiss) to investigate cell structural
changes after IL-15 stimulations over time. In such a case,
cells were marked with vital stains – Hoechst for the nucleus
and CellTracker for the cytosol.

Results and discussion

For a successful application of ML for NK cell subclass
classification, we first performed the training step on sorted
CD56dim and CD56bright NK cell subclasses. Hereby, cells were
isolated using a high-performance monoclonal antibody cell

sorting approach obtaining a purity ≥96% for sorted cell
populations. In this regard, the CD56dim and CD56bright NK
cell subclasses were purified starting from PBMCs gated on
the lymphocyte region (R1) and subsequently separated by a
flow cytometry gating strategy for the exclusive positivity to
the CD56 marker, in terms of CD56dim (R2) and CD56bright

(R3) fluorescence intensity (ESI† Fig. S5). Afterwards, cells
were separately analysed with our microfluidic measurement
approach. In more detail, we performed microfluidic
measurements using a viscoelastic sample medium, which
ensured precise 3D-alignment of single target cells to the
incident laser beam. Before each measurement, we checked
the cell integrity and vitality via bright-field microscopy
observations and ‘Trypan blue’ tests (ESI,† Fig. S3 and S4 and
Table S5). Cells appeared to be round shaped and with no
visible membrane damage. Note that NK cells are circulant
cells, generally not adhering to surfaces;66 therefore, we
considered cell roundness as an indicator for cell vitality.67

Also, the viscoelastic medium used for cell alignment does
not induce any significant osmotic pressure changes on
investigated cells, and therefore, it does not significantly
affect the cell vitality during our measurement time.55 As a
confirmation, bright-field microscopy observations were
performed after cell measurements with the same results.

Our measurement approach retrieves four biophysical
single cell features: cell diameter (D), refractive indices of the
nucleus (RIN) and cytosol (RIC), and nucleus over cytosol ratio
(N/C-ratio). D is a direct measure of cell dimensions, at
submicrometric precision, and it infers that the analysed
cells are spherical. RIN and RIC indicate the optical density of
the corresponding cell compartments, the nucleus and
cytosol. In more detail, RIN significantly depends on the
chromatin organization in a cell nucleus,68 which is known
to vary during cell life,69 spanning from active transcription
(high RIN) to resting state (low RIN). On the other hand, RIC
correlates with the presence of components in the cell
cytosol, such as proteins and granules, or the re-organization
of the cytoskeleton. Finally, the N/C-ratio relates the nucleus
and overall dimensions of a cell, which is known to be a
fundamental parameter for cell investigation, useful to
classifying cells and to evaluating cell transformations.

Fig. 2a shows 3D scatter plots of biophysical cell features
for the CD56bright versus CD56dim NK cell subclasses, which
are used as input to train our ML algorithm. We used a
quadratic support vector machine (SVM) classifier with one
neighbour, the Euclidean metric distance and equal distance
weights. In addition, we applied a box constraint level of 0.1
and a kernel scale of 1, reducing the penalty imposed on
margin-violating observations, and, therefore, preventing
overfitting of our test data. Indeed, the quadratic SVM was
found to be the most suitable algorithm according to speed
and accuracy (training time = 0.5 s with circa 30 000
observations per s and a total misclassification cost = 45). We
repeated the classification five times resulting in an average
prediction accuracy of 86.4%. Other classifiers resulted in
lower performances: the linear SVM trained classifier showed
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an accuracy of 84.3%, fine K nearest neighbour (KNN) 81.6%
and medium tree 86.1%. The parallel coordinate plots in
Fig. 2b highlight the correlation between the four extracted
biophysical cell features (each biophysical cell feature is
represented by a vertical axis). The used classifier showed a
TPR (or sensitivity) for CD56bright cells of 94.1% and for
CD56dim cells of 76.4% (see Fig. 2c, ESI† Fig. S1 and Table
S1). The results indicate that our ML classifier (NK cell
classifier) has a better sensitivity in classifying CD56bright

cells compared to CD56dim cells, due to the significantly
different RIN values. Since RIN correlates with the optical
density of the nucleus compartment, we infer that the
chromatin state of CD56bright subclasses, presumably in its
active state, could be responsible for such a biophysical
feature rising.70

Afterwards, we used mobilized NK cells, which were
withdrawn from a healthy subject, who was treated with
G-CSF for a bone marrow transplant of a paediatric leukemic

Fig. 2 Training of the ML classifier with CD56bright and CD56dim NK cell data from probands 3 and 4. (a) CD56bright and CD56dim NK cells from
both probands (N = 188 and 144 for CD56bright and CD56dim, respectively) were measured with the light scattering apparatus. (b) Scattering
outcomes are used as input for the NK cell classifier (quadratic SVM). The parallel coordinate plots indicate the correlation between the four
investigated biophysical cell features, showing an overall accuracy of 86.4%. (c) ML result matrix shows a better classification accuracy for
CD56bright cells (true positive rate (TPR), false negative rate (FNR)).

Fig. 3 IL-15 investigation of NK cells over time (0–120 h). Cells were analyzed with the light scattering measurement approach and the previously
trained NK classifier was applied. (a) 3D-scatter plots show the NK subclass predictions for different biophysical cell features. Analyzed cell number
= 286, 50, 74, 70, 66, 57, 129 and 97 for time 0 h, 12 h-IL, 24 h-IL, 48 h-IL, 72 h-IL, 96 h-IL, 120 h-IL and 120 h, respectively. (b) CD56dim over
CD56bright outcome shown for stimulated cells (0 h to 120 h–IL). Note that 120 h (without IL-15) is not plotted.
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patient. Such blood samples result in an enriched NK cell
fraction compared to that of physiological PBMCs, which
allowed us to test our measurement approach for therapeutic
purposes. We first analysed the mobilized sample with our
measurement approach to retrieve biophysical features.
Then, a ML classifier for PBMCs was trained on such data for
the identification of the main classes of PBMCs
(erythrocytes,55 lymphocytes,56 NK cells, and monocytes51

with respectively n = 110, 200, 200 and 148 cells). Note that
the PBMC classifier was trained for different cell classes
using the same experimental setup as well as the same ML
parameters as those for the NK classifier.

The morphometric based ML results indicate 25%
lymphocytes and 75% NK cells in the mobilized cell sample
and the absence of the other investigated cell classes, which
is in good agreement with the flow cytometry outcomes,
which show 78% NK cells (CD56 positive), 18%
T-lymphocytes (CD3 positive) and 2% B-lymphocytes (CD19
positive) (see ESI† Fig. S5). Intriguingly, the flow cytometric
analysis of the mobilized cells after IL-15 stimulation
revealed a double population of NK lymphocytes (CD56
positive): a larger one (about 30% of the CD56 positive cells)
and a smaller one (about 70% of CD56 positive cells). This
data is consistent with the different morphological
characteristics of the CD56dim and CD56bright cells.

After identification as lymphocytes, we classified the
mobilized sample using the NK classifier (Fig. 3a). The
biophysical cell features are reported as 3D scatter plots (and

projected as 2D planes for each feature combination) to
illustrate the morphological transition upon IL treatment.
The results indicate the spreading of data clouds over time
(indicating biophysical cell changes), especially after 48 h
compared to the reference measurement (120 h without IL
treatment). Moreover, we noticed that the NK cell classifier
score for CD56dim is low at time 0 h and significantly
increases over time (see Fig. 4).

After 48 h, the CD56dim score values significantly increase
and demonstrate robust classification outcomes. The results
indicate 60% CD56dim cells and 40% CD56bright cells at 0 h
(see Fig. 3b). Such a proportion is different from those in the
literature (see Table 1), where the high amount of CD56bright

can be ascribed to the mobilization with G-CSF.71–74 The
results show that the CD56dim NK cell subclass increases in
ratio over the CD56bright ones over time (from 60 to 92%, see
Fig. 3b), which illustrate the cell transition induced by IL-15.
Fig. 5 (see ESI† Table S2) summarizes features from our
approach over IL treatment time. The CD56 outcome
indicates the biophysical features obtained from our
measurement approach, while the CD56dim and CD56bright

features are obtained after classification with the NK
classifier. The results show a small reduction of cell
dimensions for classified CD56bright cells over time, while the
CD56dim dimensions increase. Also, the CD56bright cells show
a higher reduction of their N/C-ratio over time compared to
the CD56dim cells.

Moreover, RIN differences between CD56bright and CD56dim

at 0 h decrease during IL treatment, while the RIC values
significantly change, increasing from 1.36 to 1.38. Such
variations can indicate that IL-15 affects the cytosolic
compartment more than the nuclear one, promoting the

Fig. 4 Score outcome for CD56dim of IL-15 investigations over IL
treatment time (0–120 h). The higher the score value, the higher the
probability of correct classification of a cell. A clear score shift for IL
stimulation over time is noticed.

Table 1 Literature and experimental cell ratio values for CD56bright versus
CD56dim NK cell subclasses. Experimental values are from four healthy
probands with n = 187, 120, 74 and 114

CD56bright CD56dim Experiment/references

10% 90% Ref. 6
≤10% 90% Ref. 2
∼10% ∼90% Ref. 3
16% 84% Sample #1
25% 75% Sample #2
22% 78% Sample #3
38% 62% Sample #4
∼25% ∼74% Average of samples

Fig. 5 Biophysical cell features during IL-15 investigation. (a) CD56
features (n = 286, 50, 74, 70, 66, 57 and 129), before and after ML
classification for CD56dim (n = 171, 26, 41, 38, 47, 52 and 119) and
CD56bright (n = 115, 24, 33, 32, 19, 5 and 10) for time 0 h, 12 h-IL, 24 h-
IL, 48 h-IL, 72 h-IL, 96 h-IL and 120 h-IL respectively. Triangles indicate
the control measurement at 120 h (n = 97) without IL-15 treatment. (b)
Fluorescence images of CD56dim and CD56bright (green colour shows
‘Wheat Germ Agglutinin’, while red colour illustrates ‘Sytox Green’
staining). The length of the scale bar is 10 μm.

Lab on a Chip Paper

Pu
bl

is
he

d 
on

 0
3 

Se
pt

em
be

r 
20

21
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i N

ap
ol

i F
ed

er
ic

o 
II

 o
n 

12
/7

/2
02

1 
8:

50
:3

0 
A

M
. 

View Article Online

https://doi.org/10.1039/d1lc00651g


4150 | Lab Chip, 2021, 21, 4144–4154 This journal is © The Royal Society of Chemistry 2021

possible formation of granules,75 indicating a maturation
towards the acquisition of cytotoxic ability. Note that the
reference measurement (120 h without IL-15) remains
constant with respect to the CD56bright versus CD56dim NK
cell subclass ratio (see Fig. 3 and 5). Furthermore, as
mentioned before, the results show that the N/C-ratio of cells
significantly decreased, because of the cytosolic size increase,
while the nucleus became more compact, probably due to a
change in the state of transcription. To further confirm such
outcomes, we performed immunofluorescence observations
of IL-15 treated and untreated NK cells, staining both the
cytosol and nucleus. As shown in Fig. 5, the cytosolic space
appears denser after IL-15 stimulation with evident
agglomerates.

Next, we applied the NK classifier to physiological cell
samples (CD56), after purification from other cell classes
(ESI† Fig. S5). We performed our measurements within 24
hours after blood donation. Biophysical features of the
investigated cells were used as input for the ML classifier to
retrieve the percentage of CD56bright versus CD56dim cells in
each sample (see Fig. 3b). The NK classifier predicted
significantly higher CD56dim concentrations in the analysed
samples. The overall average value of all four samples was
respectively 25.25 ± 8.04% for CD56bright NK cells and 74.75 ±
8.04% for CD56dim. Fig. 6 shows the score values of the
predicted cell classes for each of the four physiological

samples. High (more positive) score values indicate correct
cell classification. The results show a significantly higher
score for CD56dim compared to that for CD56bright, with a
higher prediction accuracy for CD56bright. We noticed similar
biophysical values for each analysed sample, showing
CD56dim majority with respect to CD56bright (see Table 1). The
slight discrepancies with literature data could be ascribed to
the different measurement approaches (light scattering
pattern vs. flow cytometry). Moreover, we investigated cells
through bright-field microscopy observations and ‘Trypan
blue’ tests before and after each measurement,
demonstrating their viability (ESI† Fig. S4).

Conclusions

In this work, we propose an in-flow, non-invasive, label-free
approach with supervised machine learning to classify
subclasses (CD56bright and CD56dim) of human NK cells
according to their biophysical features. This approach shows
an overall classification accuracy of more than 86%, where
CD56bright NK cells are predicted with more than 94%
accuracy. The microfluidic device used as a support for the
single-cell light scattering analysis was optimized for ML
training as well as for the classification of unknown samples.
Moreover, we demonstrated for the first time that a ML

Fig. 6 NK cells from four probands are classified with the NK classifier (n = 187, 120, 74 and 114). The plots on the right indicate the score of the
predicted CD56dim subclass, where a higher score indicates stronger evidence for the prediction and vice versa. The numbering (a, b, c and d) on
each row indicates the four different proband sample numbers (1, 2, 3 and 4).
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classifier is capable of discriminating CD56bright and CD56dim

subclasses in NK cells.
We preliminarily tested our approach on NK cells after IL-

15 treatment, showing the cytosolic compartment as the most
relevant for NK cell subclass discrimination. We observed a
significant change of cell dimensions for CD56dim and of the
N/C-ratio for CD56bright, as well as cytosolic compartment
changes (RIC) for CD56dim and CD56bright after IL-15
stimulation with a significant shift of CD56bright towards
CD56dim. Based on this, we succeeded in classifying NK cells
from proband samples in accordance with cytometry tests
with a majority of CD56dim with respect to CD56dim. More
importantly, viability tests confirmed that the use of
appropriate microfluidic conditions and biocompatible fluids
guarantees cell viability, demonstrating the non-invasiveness
of the approach. By identifying NK cell subsets with high
precision, our measurement approach could help in
maximizing success in fundamental NK cell biology as well
as quality control in cell therapy.
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