16 research outputs found

    Assessing the long-term welfare effects of the biological control of cereal stemborer pests in East and Southern Africa: Evidence from Kenya, Mozambique and Zambia

    Get PDF
    The International Centre of Insect Physiology and Ecology (icipe), undertook a biological control (BC) programme for control of stemborers from 1993 to 2008, to reduce cereal yield losses due to stemborer attack in East and Southern Africa. The programme released four biological control agents—the larval parasitoids Cotesia flavipes and Cotesia sesamiae, the egg parasitoid Telenomus isis and the pupal parasitoid Xanthopimpla stemmator—to control the economically important stemborer pests Busseola fusca, Chilo partellus and Sesamia calamistis. Two of the natural enemies that were released got established and spread to many localities in the region. This study adopted the economic surplus model based on production, market and GIS data to evaluate the economic benefits and cost-effectiveness of the programme in three countries—Kenya, Mozambique and Zambia. Findings show that the biological control intervention has contributed to an aggregate monetary surplus of US1.4billiontotheeconomiesofthethreecountrieswith84 1.4 billion to the economies of the three countries with 84% from maize production and the remaining 16% from sorghum production. The net present value over the twenty years period was estimated at US 272 million for both crops and ranged from US142millionforKenyatoUS 142 million for Kenya to US 39 million for Zambia. The attractive internal rate of return (IRR) of 67% compared to the considered discount rate of 10%, as well as the estimated benefit–cost ratio (BCR) of 33:1, illustrate the efficiency of investment in the BC research and intervention. The estimated number of people lifted out of poverty through the BC-programme was on average 57,400 persons (consumers and producers) per year in Kenya, 44,120 persons in Mozambique, and 36,170 persons in Zambia, representing an annual average reduction of poor populations, respectively of 0.35, 0.25 and 0.20% in each of the three countries. These findings underscore the need for increased investment in BC research to sustain cereal production and improve poor living conditions

    Smallholder Farmers’ Perspectives on Climatic Variability and Adaptation Strategies in East Africa: The Case of Mount Kilimanjaro in Tanzania, Taita and Machakos Hills in Kenya

    Get PDF
    Climate change is expected to have serious economic and social impacts in East Africa, particularly on rural farmers whose livelihoods largely depend on rain-fed agriculture, hence adaptation is required to offset projected drawbacks of climate change on crop productivity. This paper examines farmers' perceptions and understanding of climatic variability, coping strategies adopted and factors that influence the choice of a particular adaptation. The study uses cross section data collected from 510 farmers in three mountain gradients sites, namely; Mount Kilimanjaro of Tanzania, Taita and Machakos Hills of Kenya. Farmers’ perceptions were compared to actual trend in meteorological records over the last thirty years (1981-2010). The result revealed that farmers in East Africa were partly aware of climate variability, mainly in temperature and rainfall patterns. Many respondents reported that conditions are drier and rainfall timing is becoming less predictable. The perception of farmers on temperature and rainfall were in line with recorded meteorological data, but contrary with that of recorded rainfall in Machakos which was perceived to be decreasing by the farmers. Farmers perceived changes in rainfall and temperature to have negative effects on the production and management of crops. The common adaptation strategies used by farmers include water harvesting, soil conservation techniques and shifting of planting periods. The most important variables affecting farmers choices in regards to adaptation option were, lack of access to credit, farming experience and household size. As a conclusion, there is a need for these factors to be taken into account in the development and implementation of smallholder farmers’ adaptation strategies to climate variability in East Africa. Additionally, dedicated capacity building and extensive outreach initiatives on adaptation through governments, researchers, policy-makers and the farmers groups themselves are needed to achieve large scale success

    The Present and Future Role of Insect-Resistant Genetically Modified Maize in IPM

    Get PDF
    Commercial, genetically-modified (GM) maize was first planted in the United States (USA, 1996) and Canada (1997) but now is grown in 13 countries on a total of over 35 million hectares (\u3e24% of area worldwide). The first GM maize plants produced a Cry protein derived from the soil bacteriumBacillus thuringiensis (Bt), which made them resistant to European corn borer and other lepidopteran maize pests. New GM maize hybrids not only have resistance to lepidopteran pests but some have resistance to coleopteran pests and tolerance to specific herbicides. Growers are attracted to the Btmaize hybrids for their convenience and because of yield protection, reduced need for chemical insecticides, and improved grain quality. Yet, most growers worldwide still rely on traditional integrated pest management (IPM) methods to control maize pests. They must weigh the appeal of buying insect protection “in the bag” against questions regarding economics, environmental safety, and insect resistance management (IRM). Traditional management of maize insects and the opportunities and challenges presented by GM maize are considered as they relate to current and future insect-resistant products. Four countries, two that currently have commercialize Bt maize (USA and Spain) and two that do not (China and Kenya), are highlighted. As with other insect management tactics (e.g., insecticide use or tillage), GM maize should not be considered inherently compatible or incompatible with IPM. Rather, the effect of GM insect-resistance on maize IPM likely depends on how the technology is developed and used

    On-farm maize storage systems and rodent postharvest losses in six maize growing agro-ecological zones of Kenya

    Get PDF
    Rodents are one of the major postharvest pests that affect food security by impacting on both food availability and safety. However, knowledge of the impact of rodents in on-farm maize storage systems in Kenya is limited. A survey was conducted in 2014 to assess magnitudes of postharvest losses in on-farm maize storage systems in Kenya, and the contribution of rodents to the losses. A total of 630 farmers spread across six maize growing agro-ecological zones (AEZs) were interviewed. Insects, rodents and moulds were the main storage problems reported by farmers. Storage losses were highest in the moist transitional and moist mid-altitude zones, and lowest in the dry-transitional zone. Overall, rodents represented the second most important cause of storage losses after insects, and were ranked as the main storage problem in the lowland tropical zone, while insects were the main storage problem in the other AEZs. Where maize was stored on cobs, total farmer perceived (farmer estimation) storage weight losses were 11.1 ± 0.7 %, with rodents causing up to 43 % of these losses. Contrastingly, where maize was stored as shelled grain, the losses were 15.5 ± 0.6 % with rodents accounting for up to 30 %. Regression analysis showed that rodents contributed significantly to total storage losses (p < 0.0001), and identified rodent trapping as the main storage practice that significantly (p = 0.001) lowered the losses. Together with insecticides, rodent traps were found to significantly decrease total losses. Improved awareness and application of these practices could mitigate losses in on farm-stored maize

    Pathogens, endosymbionts, and blood-meal sources of host-seeking ticks in the fast-changing Maasai Mara wildlife ecosystem

    No full text
    The role of questing ticks in the epidemiology of tick-borne diseases in Kenya’s Maasai Mara National Reserve (MMNR), an ecosystem with intensified human-wildlife-livestock interactions, remains poorly understood. We surveyed the diversity of questing ticks, their blood-meal hosts, and tick-borne pathogens to understand potential effects on human and livestock health. By flagging and hand-picking from vegetation in 25 localities, we collected 1,465 host-seeking ticks, mostly Rhipicephalus and Amblyomma species identified by morphology and molecular analysis. We used PCR with high-resolution melting (HRM) analysis and sequencing to identify Anaplasma, Babesia, Coxiella, Ehrlichia, Rickettsia, and Theileria pathogens and blood-meal remnants in 231 tick pools. We detected blood-meals from humans, wildebeest, and African buffalo in Rh. appendiculatus, goat in Rh. evertsi, sheep in Am. gemma, and cattle in Am. variegatum. Rickettsia africae was detected in Am. gemma (MIR = 3.10) that had fed on sheep and in Am. variegatum (MIR = 250) that had fed on cattle. We found Rickettsia spp. in Am. gemma (MIR = 9.29) and Rh. evertsi (MIR = 200), Anaplasma ovis in Rh. appendiculatus (MIR = 0.89) and Rh. evertsi (MIR = 200), Anaplasma bovis in Rh. appendiculatus (MIR = 0.89), and Theileria parva in Rh. appendiculatus (MIR = 24). No Babesia, Ehrlichia, or Coxiella pathogens were detected. Unexpectedly, species-specific Coxiella sp. endosymbionts were detected in all tick genera (174/231 pools), which may affect tick physiology and vector competence. These findings show that ticks from the MMNR are infected with zoonotic R. africae and unclassified Rickettsia spp., demonstrating risk of African tick-bite fever and other spotted-fever group rickettsioses to locals and visitors. The protozoan pathogens identified may also pose risk to livestock production. The diverse vertebrate blood-meals of questing ticks in this ecosystem including humans, wildlife, and domestic animals, may amplify transmission of tick-borne zoonoses and livestock diseases

    Diversity and distribution of lepidopteran stemborer species and their host plants in Botswana

    No full text
    corecore