93 research outputs found

    Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest

    Get PDF
    Competition for canopy space is a process of major importance in forest dynamics. Although virgin and old-growth European beech (Fagus sylvatica L.) forests in Europe have been studied for many years, there are to date no studies of individual-tree crown plasticity and the way this is influenced by local neighborhood interactions in these forests. In this study, we analyzed crown plasticity and local neighborhood interactions of individual trees in the upper canopy of the old-growth beech forests of Serrahn, northeast Germany. In a 2.8-ha sample plot, we measured crown radii of all upper canopy trees and analyzed the direction and extent of crown asymmetry. Size, relative position, and distance of neighboring trees were used to construct vectors of neighborhood asymmetry within different distances from target trees. The crowns of beech trees showed strong morphological plasticity. Mean absolute and relative displacement of crown centers from the stem base were 1.95 m and 0.37, respectively. Circular–circular rank correlation coefficients between the direction of crown displacement and the direction of neighborhood pressure showed that trees strongly positioned their crowns away from local neighbors. Highest correlation coefficients were obtained when basal area and relative position of neighboring trees within a radial distance of 12 m were considered. Clark and Evans index and Ripley’s K-function showed that crowns were more regularly distributed than stems. Projected canopy cover was about 10% higher than canopy cover with simulated circular crowns. We conclude that the crowns of older beech trees have a high ability to plastically respond to changes in the local canopy conditions, enabling very effective exploitation of canopy space

    Compiler verification meets cross-language linking via data abstraction

    Get PDF
    Many real programs are written in multiple different programming languages, and supporting this pattern creates challenges for formal compiler verification. We describe our Coq verification of a compiler for a high-level language, such that the compiler correctness theorem allows us to derive partial-correctness Hoare-logic theorems for programs built by linking the assembly code output by our compiler and assembly code produced by other means. Our compiler supports such tricky features as storable cross-language function pointers, without giving up the usual benefits of being able to verify different compiler phases (including, in our case, two classic optimizations) independently. The key technical innovation is a mixed operational and axiomatic semantics for the source language, with a built-in notion of abstract data types, such that compiled code interfaces with other languages only through axiomatically specified methods that mutate encapsulated private data, represented in whatever formats are most natural for those languages.National Science Foundation (U.S.) (Grant CCF-1253229)United States. Defense Advanced Research Projects Agency (Agreement FA8750-12-2-0293)United States. Dept. of Energy. Office of Science (Award DE-SC0008923

    Inductive Proof Outlines for Monitors in Java

    Full text link
    Abstract. The research concerning Java’s semantics and proof theory has mainly focussed on various aspects of sequential sub-languages. Java, however, integrates features of a class-based object-oriented language with the notion of multi-threading, where multiple threads can concurrently execute and exchange information via shared instance variables. Furthermore, each object can act as a monitor to assure mutual exclusion or to coordinate between threads. In this paper we present a sound and relatively complete assertional proof system for Java’s monitor concept, which generates verification conditions for a concurrent sublanguage JavaMT of Java. This work extends previous results by incorporating Java’s monitor methods

    Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo

    Get PDF
    Deforestation in the tropics is an important source of carbon C release to the atmosphere. To provide a sound scientific base for efforts taken to reduce emissions from deforestation and degradation (REDD+) good estimates of C stocks and fluxes are important. We present components of the C balance for selectively logged lowland tropical dipterocarp rainforest in the Malua Forest Reserve of Sabah, Malaysian Borneo. Total organic C in this area was 167.9 Mg C ha−1±3.8 (SD), including: Total aboveground (TAGC: 55%; 91.9 Mg C ha−1±2.9 SEM) and belowground carbon in trees (TBGC: 10%; 16.5 Mg C ha−1±0.5 SEM), deadwood (8%; 13.2 Mg C ha−1±3.5 SEM) and soil organic matter (SOM: 24%; 39.6 Mg C ha−1±0.9 SEM), understory vegetation (3%; 5.1 Mg C ha−1±1.7 SEM), standing litter (<1%; 0.7 Mg C ha−1±0.1 SEM) and fine root biomass (<1%; 0.9 Mg C ha−1±0.1 SEM). Fluxes included litterfall, a proxy for leaf net primary productivity (4.9 Mg C ha−1 yr−1±0.1 SEM), and soil respiration, a measure for heterotrophic ecosystem respiration (28.6 Mg C ha−1 yr−1±1.2 SEM). The missing estimates necessary to close the C balance are wood net primary productivity and autotrophic respiration

    Leaf Trait-Environment Relationships in a Subtropical Broadleaved Forest in South-East China

    Get PDF
    Although trait analyses have become more important in community ecology, trait-environment correlations have rarely been studied along successional gradients. We asked which environmental variables had the strongest impact on intraspecific and interspecific trait variation in the community and which traits were most responsive to the environment. We established a series of plots in a secondary forest in the Chinese subtropics, stratified by successional stages that were defined by the time elapsed since the last logging activities. On a total of 27 plots all woody plants were recorded and a set of individuals of every species was analysed for leaf traits, resulting in a trait matrix of 26 leaf traits for 122 species. A Fourth Corner Analysis revealed that the mean values of many leaf traits were tightly related to the successional gradient. Most shifts in traits followed the leaf economics spectrum with decreasing specific leaf area and leaf nutrient contents with successional time. Beside succession, few additional environmental variables resulted in significant trait relationships, such as soil moisture and soil C and N content as well as topographical variables. Not all traits were related to the leaf economics spectrum, and thus, to the successional gradient, such as stomata size and density. By comparing different permutation models in the Fourth Corner Analysis, we found that the trait-environment link was based more on the association of species with the environment than of the communities with species traits. The strong species-environment association was brought about by a clear gradient in species composition along the succession series, while communities were not well differentiated in mean trait composition. In contrast, intraspecific trait variation did not show close environmental relationships. The study confirmed the role of environmental trait filtering in subtropical forests, with traits associated with the leaf economics spectrum being the most responsive ones

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Crown plasticity and neighborhood interactions of European beech (Fagus sylvatica L.) in an old-growth forest

    Get PDF
    Competition for canopy space is a process of major importance in forest dynamics. Although virgin and old-growth European beech (Fagus sylvatica L.) forests in Europe have been studied for many years, there are to date no studies of individual-tree crown plasticity and the way this is influenced by local neighborhood interactions in these forests. In this study, we analyzed crown plasticity and local neighborhood interactions of individual trees in the upper canopy of the old-growth beech forests of Serrahn, northeast Germany. In a 2.8-ha sample plot, we measured crown radii of all upper canopy trees and analyzed the direction and extent of crown asymmetry. Size, relative position, and distance of neighboring trees were used to construct vectors of neighborhood asymmetry within different distances from target trees. The crowns of beech trees showed strong morphological plasticity. Mean absolute and relative displacement of crown centers from the stem base were 1.95 m and 0.37, respectively. Circular–circular rank correlation coefficients between the direction of crown displacement and the direction of neighborhood pressure showed that trees strongly positioned their crowns away from local neighbors. Highest correlation coefficients were obtained when basal area and relative position of neighboring trees within a radial distance of 12 m were considered. Clark and Evans index and Ripley’s K-function showed that crowns were more regularly distributed than stems. Projected canopy cover was about 10% higher than canopy cover with simulated circular crowns. We conclude that the crowns of older beech trees have a high ability to plastically respond to changes in the local canopy conditions, enabling very effective exploitation of canopy space
    • 

    corecore