1,139 research outputs found

    Lifetimes of 26Al and 34Cl in an astrophysical plasma

    Get PDF
    We study here the onset of thermal equilibrium affecting the lifetimes of 26Al and 34Cl nuclei within a hot astrophysical photon gas. The 26Al isotope is of prime interest for gamma ray astronomy with the observation of its delayed (t_1\2=0.74 My) 1.809MeV gamma-ray line. Its nucleosynthesis is complicated by the presence of a short lived (t_1\2=6.34s) spin isomer. A similar configuration is found in 34Cl where the decay of its isomer (34mCl, t_1\2=32m) is followed by delayed gamma-ray emission with characteristic energies. The lifetimes of such nuclei are reduced at high temperature by the thermal population of shorter lived levels. However, thermal equilibrium within 26Al and 34Cl levels is delayed by the presence of the isomer. We study here the transition to thermal equilibrium where branching ratios for radiative transitions are needed in order to calculate lifetimes. Since some of these very small branching ratios are not known experimentally, we use results of shell model calculations.Comment: 11 pages, 5 figures, Latex, accepted for publication in Phys. Rev.

    Experimental study of the cyclic visco-elasto-plastic behaviour of a polyamide fibre strap

    No full text
    WOSInternational audienceExperimental tensile tests were performed on polyamide-based (PA66) woven strap samples. A strain measuring device was used to measure the strain in the middle and effective part of the woven tensile sample. The tests were performed, on the one hand under monotonous tension at different strain rates and on the other hand under sophisticated cyclic loading histories, including relaxation and creep sequences. The analysis of experimental results was made through a visco-elasto-hysteresis model, based on the superimposition of three stress components. The proposed method allows for characterizing the steady state viscous stress as a function of strain and strain rate, the time-independent irreversible behaviour and the instantaneous modulus increasing with the strain. Based on the visco-elasto-hysteresis model, an analysis enabled us to understand and predict the change in relaxation and creep orientations during complex loading histories

    Backbending in 50Cr

    Get PDF
    The collective yrast band and the high spin states of the nucleus 50Cr are studied using the spherical shell model and the HFB method. The two descriptions lead to nearly the same values for the relevant observables. A first backbending is predicted at I=10\hbar corresponding to a collective to non-collective transition. At I=16\hbar a second backbending occurs, associated to a configuration change that can also be interpreted as an spherical to triaxial transition.Comment: ReVTeX v 3.0 epsf.sty, 5 pages, 5 figures included. Full Postscript version available at http://www.ft.uam.es/~gabriel/Cr50art.ps.g

    Effect of culture in simulated microgravity on the development of mouse embryonic testes

    Get PDF
    BACKGROUND All known organisms develop and evolve in the presence of gravitational force, and it is evident that gravity has a significant influence on organism physiology and development. Microgravity is known to affect gene expression, enzyme activity, cytoskeleton organization, mitotic proliferation and intracellular signaling. OBJECTIVES: The aim of the present study was to study some aspects of the development in vitro of mouse embryonic testes in simulated microgravity. MATERIAL AND METHODS: Testes from mouse embryos (12.5-16.5 days post coitum, d.p.c.) were cultured in simulated microgravity and standard static culture conditions. The microgravity condition was provided by a Rotary Cell Culture System (RWV) bioreactor, an apparatus designated for 3D tissue and small organ cultures. After 48 h of the culture in the RWV, testis morphology and size was evaluated. RESULTS: The first observation was that the culture in the RWV bioreactor had a beneficial effect on the testis growth and on the survival of germ cells in comparison to static 2D culture methods. Moreover, we found, that RWV culture caused disorganization the gonadal tissues, namely of the testis cords. CONCLUSIONS: The results suggest that the maintenance of testis cord could be sensitive to microgravity. We hypothesize that while the effect on testis growth is due to a better nutrient and oxygen supply, the testis cord's disorganization might depend on the microgravity conditions simulated by the bioreactor. Considering the complexity of the processes involved in the formation of the testis cords and their dynamic changes during the embryo fetal period, further studies are needed to identify the causes of such effect

    The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data

    Get PDF
    An inverse problem in static thermo-elasticity is investigated. The aim is to reconstruct the unspecified boundary data, as well as the temperature and displacement inside a body from over-specified boundary data measured on an accessible portion of its boundary. The problem is linear but ill-posed. The uniqueness of the solution is established but the continuous dependence on the input data is violated. In order to reconstruct a stable and accurate solution, the method of fundamental solutions is combined with Tikhonov regularization where the regularization parameter is selected based on the L-curve criterion. Numerical results are presented in both two and three dimensions showing the feasibility and ease of implementation of the proposed technique

    Hidden breakpoints in genome alignments

    Full text link
    During the course of evolution, an organism's genome can undergo changes that affect the large-scale structure of the genome. These changes include gene gain, loss, duplication, chromosome fusion, fission, and rearrangement. When gene gain and loss occurs in addition to other types of rearrangement, breakpoints of rearrangement can exist that are only detectable by comparison of three or more genomes. An arbitrarily large number of these "hidden" breakpoints can exist among genomes that exhibit no rearrangements in pairwise comparisons. We present an extension of the multichromosomal breakpoint median problem to genomes that have undergone gene gain and loss. We then demonstrate that the median distance among three genomes can be used to calculate a lower bound on the number of hidden breakpoints present. We provide an implementation of this calculation including the median distance, along with some practical improvements on the time complexity of the underlying algorithm. We apply our approach to measure the abundance of hidden breakpoints in simulated data sets under a wide range of evolutionary scenarios. We demonstrate that in simulations the hidden breakpoint counts depend strongly on relative rates of inversion and gene gain/loss. Finally we apply current multiple genome aligners to the simulated genomes, and show that all aligners introduce a high degree of error in hidden breakpoint counts, and that this error grows with evolutionary distance in the simulation. Our results suggest that hidden breakpoint error may be pervasive in genome alignments.Comment: 13 pages, 4 figure

    Caractérisation du comportement cyclique d'un matériau tissé en traction ondulée

    Get PDF
    Des résultats expérimentaux sur un matériau tissé en fils de polyamide 6-6 (PA66) sont présentés. Les essais ont été effectués d'une part en traction monotone à différentes vitesses de déformation et d'autre part en sollicitations cycliques sophistiqués de type traction ondulée avec des séquences de fluage ou de relaxation

    A gauge theoretic approach to elasticity with microrotations

    Full text link
    We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically this is due to the fact that our equations of motion are of Sine-Gordon type and thus have soliton type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.Comment: 15 pages, 1 figure; revised and extended version, one extra page; revised and extended versio

    Dynamics of thermoelastic thin plates: A comparison of four theories

    Full text link
    Four distinct theories describing the flexural motion of thermoelastic thin plates are compared. The theories are due to Chadwick, Lagnese and Lions, Simmonds, and Norris. Chadwick's theory requires a 3D spatial equation for the temperature but is considered the most accurate as the others are derivable from it by different approximations. Attention is given to the damping of flexural waves. Analytical and quantitative comparisons indicate that the Lagnese and Lions model with a 2D temperature equation captures the essential features of the thermoelastic damping, but contains systematic inaccuracies. These are attributable to the approximation for the first moment of the temperature used in deriving the Lagnese and Lions equation. Simmonds' model with an explicit formula for temperature in terms of plate deflection is the simplest of all but is accurate only at low frequency, where the damping is linearly proportional to the frequency. It is shown that the Norris model, which is almost as simple as Simmond's, is as accurate as the more precise but involved theory of Chadwick.Comment: 2 figures, 1 tabl
    • …
    corecore