54 research outputs found

    Response of the ATLAS tile calorimeter prototype to muons

    Get PDF
    A study of high energy muons traversing the ATLAS hadron Tile calorimeter in the barrel region in the energy range between 10 and 300~GeV is presented. Both test beam experimental data and Monte Carlo simulations are given and show good agreement. The Tile calorimeter capability of detecting isolated muons over the above energy range is demonstrated. A signal to background ratio of about 10 is expected for the nominal LHC luminosity (1034cm2sec110^{34} cm^{-2} sec^{-1}). The photoelectron statistics effect in the muon shape response is shown. The e/mip ratio is found to be 0.81±0.03 0.81 \pm 0.03; the e/μ\mu ratio is in the range 0.91 - 0.97. The energy loss of a muon in the calorimeter, dominated by the energy lost in the absorber, can be correlated to the energy loss in the active material. This correlation allows one to correct on an event by event basis the muon energy loss in the calorimeter and therefore reduce the low energy tails in the muon momentum distribution

    Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Get PDF
    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle θ\theta of about 11^\circ is well-described by the expression \sigma/E = ((46.5 \pm 6.0)\%/\sqrt{E} +(1.2 \pm 0.3)\%) \oplus (3.2 \pm 0.4)~\mbox{GeV}/E. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied

    A measurement of the energy loss spectrum of 150 GeV muons in iron

    Get PDF
    The energy loss spectrum of 150 GeV muons has been measured with a prototype of the ATLAS hadron calorimeter in the H8 beam of the CERN SPS.\\ The differential probability dP/dvdP/dv per radiation length of a fractional energy loss v=ΔEμ/Eμv = \Delta E_{\mu} / E_{\mu} has been measured in the range v=0.01÷0.95v = 0.01 \div 0.95 ; it is then compared with the theoretical predictions for energy losses due to bremsstrahlung and production of electron-positron pairs or of energetic knock-on electrons.\\ The integrated probability 0.010.95(dP/dv)dv\int_{0.01}^{0.95} (dP/dv) dv is (1.610±0.015stat.±0.105syst.)103(1.610\pm0.015_{stat.}\pm0.105_{syst.})\cdot10^{-3} in agreement with the theoretical predictions of 1.5561031.556\cdot10^{-3} and 1.6191031.619\cdot10^{-3}. %7.8.96 - start Agreement with theory is also found in two intervals of vv where production of electron-positron pairs and knock-on electrons dominates. In the region of bremsstrahlung dominance (v=0.12÷0.95v = 0.12\div0.95) the measured integrated probability (1.160±0.040stat±0.075syst)104(1.160\pm0.040_{stat}\pm0.075_{syst})\cdot 10^{-4} is in agreement with the theoretical value of 1.1851041.185 \cdot 10^{-4} , obtained using Petrukhin and Shestakov's \cite{PS} description of the bremsstrahlung process. The same result is about 3.6 standard deviations (defined as the quadratic sum of statistical and systematic errors) lower than the theoretical prediction of 1.472104 1.472\cdot 10^{-4}, obtained using Tsai's \cite{TS} description of bremsstrahlung

    Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients

    Get PDF
    BACKGROUND: More than 85% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked MECP2 gene which encodes methyl-CpG-binding protein 2, a transcriptional repressor that binds methylated CpG sites. Because MECP2 is subject to X chromosome inactivation (XCI), girls with RTT express either the wild type or mutant MECP2 in each of their cells. To test the hypothesis that MECP2 mutations result in genome-wide transcriptional deregulation and identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we performed gene expression profiling of pure populations of untransformed T-lymphocytes that express either a mutant or a wild-type allele. METHODS: Single T lymphocytes from a patient with a c.473C>T (p.T158M) mutation and one with a c.1308-1309delTC mutation were subcloned and subjected to short term culture. Gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. RESULTS: Expression profiling yielded 44 upregulated genes and 77 downregulated genes. We compared this gene list with expression profiles of independent microarray experiments in cells and tissues of RTT patients and mouse models with Mecp2 mutations. These comparisons identified a candidate MeCP2 target gene, SPOCK1, downregulated in two independent microarray experiments, but its expression was not altered by quantitative RT-PCR analysis on brain tissues from a RTT mouse model. CONCLUSION: Initial expression profiling from T-cell clones of RTT patients identified a list of potential MeCP2 target genes. Further detailed analysis and comparison to independent microarray experiments did not confirm significantly altered expression of most candidate genes. These results are consistent with other reported data

    Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    Get PDF
    Prototypes of the \fermi{} system have been used to read out a prototype of the \atlas{} hadron calorimeter in a beam test at the CERN SPS. The \fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out

    MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction

    Full text link

    Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain

    No full text
    Rett syndrome is a neurological disorder caused by mutations in the MECP2 gene.  MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2) that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for MeCP2_e1 is more abundant than for MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A) cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development

    Two sisters with Rett syndrome and non-identical paternally-derived microdeletions in the MECP2 gene

    Get PDF
    The unique case of two sisters with symptoms of RTT and two quite distinct, novel, and apparently de novo microdeletions of the MECP2 gene is described. One sister possessed an 18 base-pair (bp) deletion (c.1155_1172del18) within the deletion hotspot region of exon 4, whereas the other sister exhibited a 43 bp deletion at a different location in the same exon (c.1448_1461del14+29). Although these lesions occurred on the same paternally-derived X chromosome, this is probably due to chance co-occurrence owing to the relatively high mutation rate of the MECP2 gene rather than to a constitutional mutator phenotype
    corecore