62 research outputs found
Precise probing spin wave mode frequencies in the vortex state of circular magnetic dots
We report on detailed broadband ferromagnetic resonance measurements of
azimuthal and radial spin wave excitations in circular Permalloy dots in the
vortex ground state. Dots with aspect ratio (Beta =height over radius) varied
from 0.03 to 0.1 were explored. We found that for Beta exceeding approximately
0.05, variation of the spin wave eigenfrequencies with Beta deviates from the
predicted dependence. The frequency splitting of two lowest azimuthal modes was
observed. The experimentally observed dependence of the frequency splitting on
beta was reasonably well described by dynamic splitting model accounting the
spin-waves and, vortex gyrotropic mode interaction
Synthetic route to low damping in ferromagnetic thin-films
Previous theory indicated that the individual monolayers within transition metal ferromagnet thin-films contribute different magnitudes to the total ferromagnetic damping. Here, the aim was to investigate if the thin-film damping could be reduced by electronic engineering of the higher damping regions via localized doping. We present new theoretical analysis and experimental results for sputtered Co thin-films in which the upper and lower surface regions were locally doped with Cr. Theory indicates that local doping does reduce the damping and the experiments show a comparable reduction of the damping with increasing local doping up to 30% Cr, while the measured damping falls further with higher local doping, which may be attributed to changes in the film structure. This work opens a route to create low-damping magnetic thin-films
Origin of four-fold anisotropy in square lattices of circular ferromagnetic dots
We discuss the four-fold anisotropy of in-plane ferromagnetic resonance (FMR)
field , found in a square lattice of circular Permalloy dots when the
interdot distance gets comparable to the dot diameter . The minimum
, along the lattice axes,
differ by 50 Oe at = 1.1. This anisotropy, not expected in
uniformly magnetized dots, is explained by a non-uniform magnetization
\bm(\br) in a dot in response to dipolar forces in the patterned magnetic
structure. It is well described by an iterative solution of a continuous
variational procedure.Comment: 4 pages, 3 figures, revtex, details of analytic calculation and new
references are adde
Spin-wave eigenmodes in direct-write 3D nanovolcanoes
Extending nanostructures into the third dimension has become a major research avenue in modern magnetism, superconductivity, and spintronics, because of geometry-, curvature-, and topology-induced phenomena. Here, we introduce Co-Fe nanovolcanoes-nanodisks overlaid by nanorings-as purpose-engineered 3D architectures for nanomagnonics, fabricated by focused electron beam-induced deposition. We use both perpendicular spin-wave resonance measurements and micromagnetic simulations to demonstrate that the rings encircling the volcano craters harbor the highest-frequency eigenmodes, while the lower-frequency eigenmodes are concentrated within the volcano crater, due to the non-uniformity of the internal magnetic field. By varying the crater diameter, we demonstrate the deliberate tuning of higher-frequency eigenmodes without affecting the lowest-frequency mode. Thereby, the extension of 2D nanodisks into the third dimension allows one to engineer their lowest eigenfrequency by using 3D nanovolcanoes with 30% smaller footprints. The presented nanovolcanoes can be viewed as multi-mode microwave resonators and 3D building blocks for nanomagnonics.O.V.D. and S.L.C. acknowledge the Austrian Science Fund (FWF) for support through Grant No. I 4889 (CurviMag). The Portuguese team acknowledges the Network of Extreme Conditions Laboratories-NECL and the Portuguese Foundation of Science and Technology (FCT) support through Project Nos. NORTE-01-0145-FEDER-022096, PTDC/FIS-MAC/31302/2017, POCI-0145-FEDER-030085 (NOVAMAG), and EXPL/IF/00541/2015. N. Z. and A. V. C. acknowledge the Austrian Science Fund (FWF) for support through Grant No. I 4917. S. B. acknowledges funding by the) Deutsche Forschungsgemeinschaft (DFG through Grant Nos. BA 6595/2-1 and BA 6595/1-1. K. G. acknowledges support from IKERBASQUE (the Basque Foundation for Science). The work of K. G. was supported by the Spanish Ministry of Science and Innovation through Grant No. PID2019-108075RB-C33/AEI/10.13039/501100011033. M.H. acknowledges the DFG for support through Grant No. HU 752/16-1. Support through the Frankfurt Center of Electron Microscopy (FCEM) is gratefully acknowledged. Further, support of the European Cooperation in Science and Technology via COST Action No. CA16218 (NANOCOHYBRI) is acknowledged
Vortex dynamics in confined stratified conditions
We report on linear spin dynamics in the vortex state of the Permalloy dots
subjected to stratified (magnetic) field. We demonstrate experimentally and by
simulations the existence of two distinct dynamic regimes corresponding to the
vortex stable and metastable states. Breaking cylindrical symmetry leads to
unexpected eigenmodes frequency splitting in the stable state and appearance of
new eigenmodes in the metastable state above the vortex nucleation field.
Dynamic response in the metastable state strongly depends on relative
orientation of the external rf pumping and the bias magnetic fields. These
findings may be relevant for different vortex states in confined and stratified
conditions
Magnetic and transport properties of diluted granular multilayers
The magnetic and transport properties of Co80Fe20t /Al2O34 nm multilayers with low nominal thicknesses t=0.7 and 0.9 nm of Co80Fe20 granular layers are studied. Magnetic studies find a superparamagnetic state above the blocking temperature Tb of field-cooled/zero-field-cooled splitting that grows with t and decreases with H. The low-voltage Ohmic tunnel transport passes to
non-Ohmic IV3/2 law for applied fields above 500 V/cm. At fixed V, the temperature dependence of conductance reveals an anomalous dip around 220 K, which can be attributed to the effect of surface contamination by supercooled water. Current-in-plane tunnel magnetoresistance MR ratio tends, at lower t, to higher maximum values 8% at room temperature but to lower field sensitivity. This may indicate growing discorrelation effect e.g., between shrinking areas of correlated moments in this regime and corroborates the deficit of granule magnetization estimated from the Inoue–Maekawa MR fit, compared to that from direct magnetization measurements. MR displays a mean-field-like critical behavior when t approaches the point of superparamagnetic/ superferromagnetic transition tc1.3 nm at room temperature from below, different from the formerly reported percolationlike behavior at approaching it from above.With growing temperature, MR reveals, beyond the common decrease, an anomalous plateau from Tb30–50 K up to some
higher value T150–200 K, not seen at higher t
- …