115 research outputs found

    Arginase from kiwifruit: properties and seasonal variation

    Get PDF
    The in vitro activity of arginase (EC 3.5.3.1) was investigated in youngest-mature leaves and roots (1-3 mm diameter) of kiwifruit vines (Actinidia deliciosa var. deliciosa) during an annual growth cycle, and enzyme from root material partially purified. No seasonal trend in the specific activity of arginase was observed in roots. Measurements in leaves, however, rose gradually during early growth and plateaued c. 17 weeks after budbreak. Changes in arginase activity were not correlated with changes in the concentration of arginine (substrate) or glutamine (likely end-product of arginine catabolism) in either tissue during the growth cycle. Purification was by (NH4)2SO4 precipitation and DEAE-cellulose chromatography. The kinetic properties of the enzyme, purified 60-fold over that in crude extracts, indicated a pH optimum of 8.8, and a Km (L-arginine) of 7.85 mM. Partially-purified enzyme was deactivated by dialysis against EDTA, and reactivated in the presence of Mn²⁺, Co²⁺, and Ni²⁺

    Non-smooth Hopf-type bifurcations arising from impact–friction contact events in rotating machinery

    Get PDF
    We analyse the novel dynamics arising in a nonlinear rotor dynamic system by investigating the discontinuity-induced bifurcations corresponding to collisions with the rotor housing (touchdown bearing surface interactions). The simplified Föppl/Jeffcott rotor with clearance and mass unbalance is modelled by a two degree of freedom impact–friction oscillator, as appropriate for a rigid rotor levitated by magnetic bearings. Two types of motion observed in experiments are of interest in this paper: no contact and repeated instantaneous contact. We study how these are affected by damping and stiffness present in the system using analytical and numerical piecewise-smooth dynamical systems methods. By studying the impact map, we show that these types of motion arise at a novel non-smooth Hopf-type bifurcation from a boundary equilibrium bifurcation point for certain parameter values. A local analysis of this bifurcation point allows us a complete understanding of this behaviour in a general setting. The analysis identifies criteria for the existence of such smooth and non-smooth bifurcations, which is an essential step towards achieving reliable and robust controllers that can take compensating action

    Is FLT3 internal tandem duplication an unfavorable risk factor for high risk children with acute myeloid leukemia? : Polish experience

    Get PDF
    According to the AML-BFM 2004 Interim, a treatment protocol used in Poland since 2005, presence of FLT3 internal tandem duplication (FLT3/ITD) qualifies a patient with acute myeloid leukemia (AML) to a high-risk group (HRG). The present study was aimed to identify the prevalence of FLT3/ITD in children with AML in Poland and to evaluate its prognostic significance in the HRG patients. Out of 291 children with de novo AML treated in 14 Polish centers between January 2006 and December 2012, samples from 174 patients were available for FLT3/ITD analysis. Among study patients 108 children (61.7%) were qualified to HRG. Genomic DNA samples from bone marrow were tested for identification of FLT3/ITD mutation by PCR amplification of exon 14 and 15 of FLT3 gene. Clinical features and treatment outcome in patients with and without FLT3/ITD were analyzed in the study. The FLT3/ITD was found in 14 (12.9%) of 108 HRG children. There were no significant differences between children with and without FLT3/ITD in age and FAB distribution. The white blood cells count in peripheral blood at diagnosis was significantly higher (p <0.01) in the children with FLT3/ITD. Over 5-year overall survival rate for FLT3/ITD positive children was worse (42.4%) comparing to FLT3/ITD negative children (58.9%), but the statistical difference was not significant. However, over 5-year survivals free from treatment failures were similar. The FLT3/ITD rate (12.9%) observed in the study corresponded to the published data. There was no significant impact of FLT3/ITD mutation on survival rates, although further studies are needed on this subject

    Drillstring-borehole interaction: backward whirl instabilities and axial loading

    Get PDF
    A major concern within the oil drilling industry remains the interaction between the drillstring and borehole. The interaction between the drillstring and borehole wall involves nonlinearities in the form of friction and contact. The drillstring borehole interaction induces whirling behaviour of the drillstring causing forward whirl, backward whirl or intermittent bouncing behaviour depending on the system parameters. The purpose of this study is to analyse the steady backward whirl behaviour within the system which reduces the fatigue life of the drillstring. Initially a two discs model was developed to analyse the behaviour of the system. The theoretical model was tuned by altering the phase of the eccentric mass. This excites each lateral modes of the system in isolation. The effects of impact, friction and mass unbalance are included in the model. For the tuned system the backward whirl behaviour was analysed by carrying out a rotor speed sweep spanning the lateral natural frequencies. The influence of rotor speed on the system dynamics is explored using a run up and run down and is analysed using a waterfall plot. The waterfall plot indicated the frequency of maximum response corresponding to each rotor speed. Depending on the whirling behaviour the dominant frequency was observed at the lateral natural frequency, the rotational speed or the backward whirl frequency. The influence of variation in whirling behaviour due to altering of the axial load was analysed for a multiple disc case consisting of five discs. A transition in behaviour along the length of the drillstring was observed due to the axial load and bending moment interactions. Depending on the mode excited impact and sustained contact initiation with the borehole varied across the different stabilizer locations

    Efficacy and Safety of Lacosamide in Painful Diabetic Neuropathy

    Get PDF
    OBJECTIVE: To evaluate efficacy and safety of lacosamide compared with placebo in painful diabetic polyneuropathy. RESEARCH DESIGN AND METHODS: Diabetic patients with at least moderate neuropathic pain were randomized to placebo or lacosamide 400 (in a slow or standard titration) or 600 mg/day over 6-week titration and 12-week maintenance periods. Primary efficacy criterion was intra-individual change in average daily Numeric Pain Rating Scale score from baseline to the last 4 weeks. RESULTS: For the primary end point, pain reduction was numerically but not statistically greater with lacosamide compared with placebo (400 mg/day, P = 0.12; 600 mg/day, P = 0.18). Both doses were significantly more effective compared with placebo over the titration (P = 0.03, P = 0.006), maintenance (P = 0.01, P = 0.005), and entire treatment periods (P = 0.03, P = 0.02). Safety profiles between titration schemes were similar. CONCLUSIONS: Lacosamide reduced neuropathic pain and was well tolerated in diabetic patients, but the primary efficacy criterion was not met, possibly due to an increased placebo response over the last 4 weeks.status: publishe

    Expression, Purification and Characterization of Arginase from Helicobacter pylori in Its Apo Form

    Get PDF
    Arginase, a manganese-dependent enzyme that widely distributed in almost all creatures, is a urea cycle enzyme that catalyzes the hydrolysis of L-arginine to generate L-ornithine and urea. Compared with the well-studied arginases from animals and yeast, only a few eubacterial arginases have been characterized, such as those from H. pylori and B. anthracis. However, these enzymes used for arginase activity assay were all expressed with LB medium, as low concentration of Mn2+ was detectable in the medium, protein obtained were partially Mn2+ bonded, which may affect the results of arginase activity assay. In the present study, H. pylori arginase (RocF) was expressed in a Mn2+ and Co2+ free minimal medium, the resulting protein was purified through affinity and gel filtration chromatography and the apo-form of RocF was confirmed by flame photometry analysis. Gel filtration indicates that the enzyme exists as monomer in solution, which was unique as compared with homologous enzymes. Arginase activity assay revealed that apo-RocF had an acidic pH optimum of 6.4 and exhibited metal preference of Co2+>Ni2+>Mn2+. We also confirmed that heat-activation and reducing regents have significant impact on arginase activity of RocF, and inhibits S-(2-boronoethyl)-L-Cysteine (BEC) and Nω-hydroxy-nor-Arginine (nor-NOHA) inhibit the activity of RocF in a dose-dependent manner

    Proteomic and Phospho-Proteomic Profile of Human Platelets in Basal, Resting State: Insights into Integrin Signaling

    Get PDF
    During atherogenesis and vascular inflammation quiescent platelets are activated to increase the surface expression and ligand affinity of the integrin αIIbβ3 via inside-out signaling. Diverse signals such as thrombin, ADP and epinephrine transduce signals through their respective GPCRs to activate protein kinases that ultimately lead to the phosphorylation of the cytoplasmic tail of the integrin αIIbβ3 and augment its function. The signaling pathways that transmit signals from the GPCR to the cytosolic domain of the integrin are not well defined. In an effort to better understand these pathways, we employed a combination of proteomic profiling and computational analyses of isolated human platelets. We analyzed ten independent human samples and identified a total of 1507 unique proteins in platelets. This is the most comprehensive platelet proteome assembled to date and includes 190 membrane-associated and 262 phosphorylated proteins, which were identified via independent proteomic and phospho-proteomic profiling. We used this proteomic dataset to create a platelet protein-protein interaction (PPI) network and applied novel contextual information about the phosphorylation step to introduce limited directionality in the PPI graph. This newly developed contextual PPI network computationally recapitulated an integrin signaling pathway. Most importantly, our approach not only provided insights into the mechanism of integrin αIIbβ3 activation in resting platelets but also provides an improved model for analysis and discovery of PPI dynamics and signaling pathways in the future
    corecore