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We analyse the novel dynamics arising in a
nonlinear rotor dynamic system by investigating
the discontinuity-induced bifurcations corresponding
to collisions with the rotor housing (touchdown
bearing surface interactions). The simplified Föppl/
Jeffcott rotor with clearance and mass unbalance is
modelled by a two degree of freedom impact–friction
oscillator, as appropriate for a rigid rotor levitated by
magnetic bearings. Two types of motion observed in
experiments are of interest in this paper: no contact
and repeated instantaneous contact. We study how
these are affected by damping and stiffness present in
the system using analytical and numerical piecewise-
smooth dynamical systems methods. By studying
the impact map, we show that these types of motion
arise at a novel non-smooth Hopf-type bifurcation
from a boundary equilibrium bifurcation point for
certain parameter values. A local analysis of this
bifurcation point allows us a complete understanding
of this behaviour in a general setting. The analysis
identifies criteria for the existence of such smooth and
non-smooth bifurcations, which is an essential step
towards achieving reliable and robust controllers that
can take compensating action.

1. Introduction
In rotating machines that are levitated by magnetic
bearings, non-smooth events involving impact and
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friction can occur between a spinning rotor and a touchdown bearing (TDB), which has the
function of protecting the rotor and other stator components. These events are undesirable as
they may be destructive and hence costly [1]. For the rigorous derivation of possible control
strategies, it is important to understand the resulting dynamics. Thus, it is essential to understand
how periodic impacting motions arise through new types of non-smooth bifurcations, and
the purpose of this paper is to study these. The dynamics of constrained mechanical systems
experiencing (instantaneous) impact and/or friction contact events have been studied extensively
in the literature using a variety of different approaches [2]. These include measure differential
inclusions [3–7], complementarity methods [8] and also the use of non-smooth hybrid systems
[8–13]. In the latter formalism, the evolution of such systems is described by a piecewise-
smooth flow, interrupted by events such as instantaneous impacts described by maps, and is well
suited for studying periodic impacting solutions and their bifurcations. These systems experience
energy dissipation, which can be modelled by Newton’s restitution law, also referred to as the
kinematic model, and Coulomb’s friction law [10,13–17]. In this paper, we adopt the hybrid
system formalism to study the bifurcations of the periodic orbits of a simplified rotating machine,
in which a spinning disc (rotor) moves in two dimensions and experiences instantaneous contact
events with a rigid circular boundary (TDB). This system can be modelled as a two degree of
freedom impact–friction oscillator. Although other energy dissipation models, such as Poisson’s
kinetic [18] or Stronge’s energetic [12,19] model, can be adopted, all three models (kinematic,
kinetic and energetic) are equivalent for this system due to the rotor’s properties; we will elaborate
the details in §2. The study of hybrid systems related to impacting problems has led to the
identification and classification of many types of novel dynamics, including periodic and chaotic
motions, much of which arises at discontinuity-induced bifurcations (DIBs) such as the boundary
equilibrium bifurcation (BEB) [10,13,14]. In this paper, we identify a novel form of bifurcation,
at which a pair of impacting limit cycles are created simultaneously at a BEB point, when a
non-impacting equilibrium of the rotor motion lies on the boundary.

In general, the dynamic behaviour of rotating machines as described can be very complex.
Simplified models that do not take rotor damping and/or stiffness into account have been studied
in [20,21]. Li & Païdoussis [20] focus on numerically investigating continuous contact (rub)
and repeated impact motion, which yields rich dynamics such as chaos as well as non-smooth
bifurcations. Lu et al. [21] analytically derive existence conditions of periodically impacting
motion. Our intention in this paper is not to give a complete survey of such, but to consider a
specific form of motion and the novel Hopf-type bifurcations, which lead to this. In particular,
Keogh & Cole [22] show that a rotor–stator system with damping and friction can exhibit
various forms of stable and unstable synchronous single impact limit cycles. In this paper,
we present a global analysis of the existence of this type of orbit and describe the novel
bifurcations between the aforementioned equilibrium states without impact and two coexisting
limit cycles with different period at the BEB point. This bifurcation has many of the qualitative
features of a smooth Hopf bifurcation in that small amplitude impacting limit cycles of non-zero
period are created close to the BEB point. For the sake of classification, we shall call it a non-
smooth Hopf (NSH) bifurcation. Our analysis of this bifurcation will be general and applicable
to many other related problems. Similar discontinuity-induced Hopf bifurcations, exhibiting a
bifurcation of a non-impacting equilibrium to a limit cycle with impact, have been observed
in planar piecewise smooth continuous systems [13,14,23] with sliding [24] and with biological
applications [25]. In vibro-impacting systems of two degrees of freedom NSH bifurcations have
been observed and can also be a route to chaos [15,16]. In the bifurcation analysis we present
in this paper, when studying the effects of bearing damping, we also find two coexisting
smooth fold bifurcations. Furthermore, we show the existence of orbits, which at the point
of impact, have zero normal velocity and lie tangential to the impact surface, called grazing
orbits [11].

The remainder of this paper is laid out as follows. In §2, we give a brief introduction to
magnetic bearing systems comprising a spinning rotor with a disc cross section impacting with
a TDB. We derive the non-dimensionalized equations of the disc in free flight and the reset law
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describing the behaviour at impact. In §3, we give examples of the possible dynamics, i.e. the
rotor motion in the absence of impact and under impact, and identify the impact map, which
allows further analysis of the system. In §4, we apply a Poincaré (impact) mapping technique,
which allows us to determine solutions corresponding to the simplest forms of periodically
or quasi-periodically impacting orbits. The resulting global analysis yields new smooth and
piecewise-smooth dynamics, including the existence of the NSH-type bifurcations describing the
bifurcation from a non-impacting equilibria to two separate periodic orbits with impact. In §5, we
present a more detailed (local) study of the NSH-type bifurcation, looking at a more general class
of problems. The results of this analysis are then compared with the calculations of §4. Finally, in
§6 we present our conclusions and suggest some open questions.

2. Introduction to magnetic bearing systems and their associated dynamics

(a) Overview
Rotating machines are prevalent in engineering applications that require power to be generated
or used. The power rating is determined by the product of the driving or load torque and the
rotational speed. In order to operate effectively, a rotor should spin in a stable manner under
the support of bearings. The bearings should also be able to cope with inherent rotor unbalance
and any fault conditions that may occur during operation of the machine. A number of bearing
types are available to designers of machines, commonly including those based on rolling ball
or cylindrical elements, and bushings with oil films. Usually, there is a specified maximum
operating speed, below which it is safe to run the rotor. If this speed is exceeded for any significant
period, the bearing is likely to fail due to high mechanical or thermal stresses. Gas bearings may
allow higher speed operation, but they are limited in their load carrying capacity and require
a continuous flow of pressurized air. Foil/gas bearings are self-acting and do not require a
pressurized source, though below a threshold speed the foil element is in rubbing contact with
the rotor and is then prone to wear.

Active magnetic bearings (AMBs) have been under development since the 1970s and have seen
a growing number of applications including in turbomolecular and vacuum pumps, compressors,
motors, generators, centrifuges, flywheels and beam choppers. An arrangement of electromagnets
under feedback control enables a rotor to be levitated. It may then rotate without direct interaction
with bearing surfaces or fluids, which has advantages in terms of friction reduction and the
elimination of the need for pressurized oil or gas supplies. Higher operating speeds are therefore
possible. However, magnetic bearing functionality may be compromised by failure of the power
supply, which would lead to rotor delevitation. Also, any external disturbance may cause the
load capacity of the bearing, which is limited by magnetic flux saturation, to be exceeded.
Magnetic bearings may be configured to transmit low forces at a particular operating speed,
through use of a notch filter in the feedback control, but high acceleration input disturbances, e.g.
shock conditions, would be problematic. For these reasons, magnetic bearings usually contain
secondary TDBs to prevent rotor motion from exceeding damaging limits. The design issues for
such systems are given in [26].

Although some studies have been made to investigate the nonlinear rotor dynamics that arise
from rotor contact with TDBs, the problem is still not completely understood. The condition
for backward whirl, which may involve severe contact forces, is understood as the condition in
which the rotor is in rolling contact with the TDB [22]. A number of authors have considered the
dynamics of a rotor within a clearance space [27–39]. With respect to operational magnetic bearing
systems, which is in contrast to complete delevitation, it is important to gain a full understanding
of all nonlinear dynamic issues so that appropriate control action may be designed to recover
contact-free levitation. Without this knowledge, it is not possible to ensure that normally levitated
control is recoverable.
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Figure 1. Fixed Frame: (a) The AMB currents, iU and iL, are shown in the vertical axis only. With appropriate control, these
determine the AMB stiffness and damping characteristics. (b) The rotor-TDB impact is at the contact point CP; contact force Fc
and frictional forceμFc are acting. The rotor centre is shown in both complex coordinate z and polar coordinates ( r̃, θ̃ ). In free
flight, itsmotion is constrained to bewithin the clearance disc (white). The rotor is affected bymass unbalancewith eccentricity
ec and phase angleφ.

(b) Free motion
The mechanical model, illustrated in figure 1, is adopted from [22]. It comprises a rotor, with a
disc cross section of radius R, spinning at a high constant speed, Ω > 0, inside a fixed, circular
TDB. At the bearing centre lies the origin, from which we define the rotor position (disc centre)
in polar coordinates (r̃, θ̃ ). The rotor comes into contact with the bearing when r̃ = cr, where cr is
the radius of the clearance circle. We study the motion of the rotor centre without impacts, i.e. if
r̃< cr, and with impacts, i.e. if r̃ = cr. For convenience, we describe the position of the rotor centre
z at time τ using complex coordinates in the form

z(τ ) = x̃(τ ) + iỹ(τ ) = r̃(τ ) eiθ̃ (τ ). (2.1)

The system under consideration has magnetic bearing support characteristics under proportional-
integral-derivative (PID) control. Then the rotor’s motion can be approximated by a linear
spring-damper system with stiffness k and damping c [22]. For real machines the integral (I)
gain would be typically set at a level that gives rise to a dynamic mode having a very long time
constant. Thus, when the magnetic bearing is activated the integral action ensures that the rotor
rises slowly to the bearing centre. Thereafter, it is common to set the integral gain to zero and the
established control currents will continue to levitate the rotor at the bearing centre. The remaining
proportional (P) and derivative (D) gains will then cause the spring-damper terms to be effective
when the rotor deviates from levitated equilibrium at the magnetic bearing centre. In addition,
the rotor, of mass m is affected by mass unbalance with force fu. In free flight the rotor centre z,
(2.1), lies within the clearance circle of radius cr and satisfies a linear constant coefficient complex
valued ODE,

mz̈(τ ) + cż(τ ) + kz(τ ) = fu eiΩτ if |z(τ )|< cr. (2.2)

The forcing term depends on the angular speed Ω as well as the complex unbalance force fu,
which is given by

fu = mecΩ
2 eiφ ,

where ec is the unbalance eccentricity (distance between geometric centre and centre of mass) and
the unbalance phase φ (figure 1).
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(c) Motion with impacts
The motions of the rotor, studied in this paper, are piecewise-smooth orbits. These orbits
comprise smooth trajectories satisfying a smooth differential equation, which are interrupted by
instantaneous collisions. The collisions or impacts lead to non-smooth changes in the system
velocities (but not its position) as governed by reset laws. There is a range of designs for
practical TDBs, including bushing and rolling element types. These are mounted in housings,
either directly as push fits or with some compliant backing material to provide some degree
of cushioning. A rotor mounted touchdown sleeve may be included as another component.
However, a requirement is that the rotor motion must be constrained sufficiently so as to protect
the rotor and magnetic bearing. This necessitates that the radial stiffness associated with a TDB
must be significantly greater than that associated with a magnetic bearing [1,40,41]. Any contact
between a rotor and TDB will generate a finite region of contact, the size of which will depend
on material properties and contact forces. The contact mechanics will also determine the level
of penetration or relative closure of the TDB and rotor geometric centres under contact. In the
limiting case of zero penetration, or infinite contact stiffness, dynamic contact forces become
idealized impulsive approximations to the practically finite contact forces. We also remark that
considerable uncertainty of contact conditions may arise from angular misalignment between
a rotor and TDB. The impulsive approximation therefore provides an impact model, against
which consistent rotor dynamic behaviour may be derived. For this reason, it is adopted in this
paper. Predicted rotor motions will then generally involve sequences of instantaneous impacts
determined by impulsive normal and tangential forces [22].

The nature of impacts, which involves an impulsive collision with rebound and the
simultaneous action of Coulomb friction, is a rich area of study as a number of different scenarios
may occur at the collision depending upon the relative normal and tangential velocities [12,19].
Indeed in [12] a series of different impact models are presented for various different cases, with
special subtlety occurring when the relative tangential velocity changes sign during the collision.
However, in the case of the problem we are considering, two aspects of the model simplify the
choice of collision model. Firstly, we assume that the TDB is perfectly circular and with a larger
radius (R + cr) than that of the rotor (R). Secondly, the fact that the rotor is spinning very fast and
with high energy, means that the relative tangential velocity is high and (as we will show) does
not come close to changing sign during impact. Thus, all impacts can be modelled using Case 1 of
the models described in [12].

To model such impacts, i.e. if the rotor centre |z| = cr, we assume that the system experiences
the ith instantaneous collision at time τi with i ∈ {0, 1, 2, . . .}, and in that case a reset law applies,
which changes the velocity of the centre of the rotor. By τi,− we denote the time immediately
before the impact and by τi,+ the time immediately after the impact. Before stating the reset law,
we specify our assumptions about the nature of this collision. Firstly, the TDB is assumed to be
infinitely stiff and to behave like a fixed impact surface. In this limiting case of zero penetration,
or infinite contact stiffness, dynamic contact forces become idealized impulsive approximations
to the practically finite contact forces. Secondly, as the rotational speed Ω > 0 of the rotor is high,
the change ofΩ during impact is negligible. Hence we presume that it remains unchanged during
impact and that the effect of the impact is to only alter the radial and angular velocity of the centre
of the rotor. In particular, we assume that immediately before the impact at τi,− these velocities take

the values ˙̃ri,−, ˙̃
θi,− and values ˙̃ri,+, ˙̃

θi,+ immediately after at τi,+. Thirdly, at the point of contact CP
(figure 1), the relative tangential velocity vrel,i,± between the rotor and TDB immediately before
and after the impact is given by

vrel,i,± = RΩ + cr
˙̃
θi,±. (2.3)

In §4 (4.11), and also more generally at the end of §5, we will estimate the value of ˙̃
θi,−.

Significantly, for the examples considered, both Ω and the ratio R/cr are large and as a
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consequence, for the moderately sized values of ˙̃
θ and ˙̃r computed, we have that

˙̃
θi,± >

−RΩ
cr

. (2.4)

It follows that the relative tangential velocity both before and after the impact is positive. As a
result, we may use the impact law described as Case 1 in [12] and that the three coefficient of
restitution models, i.e. kinetic, kinematic and energetic, yield the same impact velocity, [12,19].
By contrast, it has been shown in [19] that if vrel,i,− is not constant during an instantaneous
impact with friction, then the kinetic and kinematic models can lead to a non-physical increase in
kinetic energy.

At the impact time τi,− the rotor experiences BOTH an impulsive normal contact force Fc in the
normal-(z) direction and an associated impulsive frictional force Ff in the tangential (iz)-direction.
The energy dissipation in the normal contact direction is approximated by Newton’s coefficient
of restitution d and in the tangential contact direction by Coulomb’s coefficient of friction μ.
This gives

Fc = −(1 + d)˙̃ri,−δ(τ − τi,−) (2.5)

and (using the condition (2.4))

Ff = −μ sgn(vrel,i,−)Fc = −μFc = −μ(1 + d)m˙̃ri,−δ(τ − τi,−)

where sgn is the sign function, ˙̃ri,− > 0 is the radial impact velocity and δ is the Dirac delta
function. Under these assumptions, the position of the rotor centre z is unchanged by the impact
so that

z(τi,+) = z(τi,−) =: zi. (2.6)

By contrast, at the contact point, CP the rotor’s radial and angular velocities change
instantaneously and we have

˙̃ri,+ = −d˙̃ri,−, (2.7)

RΩ + cr
˙̃
θi,+ = RΩ + cr

˙̃
θi,− − μ(1 + d)˙̃ri,−,

so that

˙̃
θi,+ = ˙̃

θi,− − μ(1 + d)
˙̃ri,−
cr

. (2.8)

Again, we note that asΩ � 1 and also R/cr � 1, that for the examples computed in §4, the relative
tangential velocity vrel,i,±, given by (2.3), is positive, which is the consistency condition for the use
of this impact law as described in [12]. More detail on this condition will be given in §4.

While this reset law is linear, the equations of motion between impacts are nonlinear in
this coordinate frame (r̃, θ̃ ), and it is more convenient for further analysis to use the complex
coordinates, in which the equations of motion are linear. In the (x̃, ỹ) Cartesian frame with
z = x̃ + iỹ the reset law (2.7) and (2.8) corresponds to the nonlinear expression

ż(τi,+) = ż(τi,−) − q
Re(z∗

i ż(τi,−))zi

|zi|2
= ż(τi,−) − q ˙̃ri,−

zi

|zi|
, (2.9)

where q = (1 + d)(1 + iμ), z∗
i is the complex conjugate of zi and ˙̃ri,− = Re(z∗

i ż(τi,−))/|zi|.
It is convenient for further computations to introduce a co-rotating frame with complex

coordinate u so that

u = z e−iΩτ ≡ r̃ ei(θ̃−Ωτ ).

As the name indicates, this frame rotates synchronously with the rotor at speed Ω . This will
be advantageous when examining limit cycles, which impact synchronously with the rotor’s
rotation. Furthermore, we non-dimensionalize the system both to reduce the number of free
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parameters and also to show that no natural large or small parameters are present in this system.
We introduce a scaled time t

t =Ωτ , so that
d

dτ
=Ω

d
dt

and δ(τ − τi,−) =Ωδ(t − ti,−). (2.10)

This new term moves through one period in time t = 2π if the original time goes through one
period of the forcing term, 2π/Ω . In the fixed frame, we introduce the dimensionless polar
coordinates (r,Θ) and the complex coordinate Z,

r = r̃
cr

, Θ = θ̃ and Z ≡ r eiΘ = z
cr

which, in the co-rotating frame, correspond to the polar coordinates (r, θ ) and the complex
coordinate U given by

θ ≡Θ − t = θ̃ −Ωτ and U ≡ r eiθ = u
cr

. (2.11)

The motion of the rotor is considered to be in a forward sense if ˙̃
θ (τ )> 0, i.e. in scaled coordinates

Θ̇(t)> 0 or θ̇ (t)>−1, in a backward sense if ˙̃
θ (τ )< 0, i.e. in scaled coordinates Θ̇(t)< 0 or θ̇ (t)<

−1, and synchronous if ˙̃
θ (τ ) =Ω , corresponding to scaled coordinates Θ̇(t) = 1 or θ̇ (t) = 0. We

define the dimensionless parameters

γ = c
mΩ

, ω2 = k
mΩ2 and ρ = ec

cr
. (2.12)

Substituting (2.10)–(2.12) into (2.2), cancelling the factor of eiΩτ and dividing by mΩ2 then the
equation of motion (2.2) in the scaled co-rotating complex coordinate U becomes

Ü + (γ + 2i)U̇ + (ω2 − 1 + iγ )U = ρ eiφ if |U| ≤ 1, (2.13)

where dots now refer to differentiation with respect to t. In the scaled coordinates, an impact
occurs if |U| ≡ r = 1. Consequently, the reset law (2.6), (2.9) in the scaled coordinates is

U(ti,+) = U(ti,−) ≡ U(ti), (2.14)

U̇(ti,+) = U̇(ti,−) − qṙ(ti,−)U(ti), (2.15)

where ṙ(ti,−) = Re(U∗(ti)U̇(ti,−)). The choices of parameters (in consistent units) corresponding to
the experimental application in [22] are

m = 50 kg, c = 1400 N s m−1, k = 9.8 × 105 N m−1, ec = 0.3 × 10−3 m,

cr = 0.7 × 10−3 m, R = 0.4 × 10−1 m, φ = 0.21 rad, Ω = 184.2 rad s−1,

μ= 0.15, d = 0.95,

and the dimensionless parameters are

γ ≈ 0.152, ω≈ 0.76, ρ = 3
7

≈ 0.428, φ = 0.21 rad, μ= 0.15,

d = 0.95,
R
cr

= 57.143.

In this paper, the coefficient γ > 0 (associated with damping) will act as the bifurcation parameter
and the remaining parameters will take the values given above.

3. Basic solution dynamics and associated maps
In this section, we introduce the simplest basic solution types in the co-rotating frame, and in
particular study solutions, which are either not in contact, or could lead to continuous contact, or
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have instantaneous impacts. To analyse the system described in §2, we consider those piecewise-
smooth orbits, which comprise smooth trajectories interrupted by impulsive collisions. Such
orbits are not uncommon in the motions of mechanical systems with constraints and can be
studied using a variety of different methods. One such is the method of measure differential
inclusions described in §1 [3–7], in which the ODEs describing the system have measure valued
right-hand sides, which include the impulsive terms used to describe the effects of the impacts.
Such methods are effective for deriving results about complex motions in such problems. As an
alternative, we can use the method of recasting the magnetic bearing problem as a hybrid system
[8–13], in which we consider flows alternating with maps when a certain constraint on the orbit
is realized. The relative simplicity of the flow equations in (2.13) and of the reset law (2.14), (2.15),
allow a direct implementation of this method, which is particularly suitable for studying the
existence, stability and bifurcations of the single impact periodic orbits we consider in this paper.

(a) Maps and flows
To calculate the flows, we rewrite the scaled equations of motion (2.13) as a first-order complex
dynamical system. This will be helpful in the global and local analysis of a periodically impacting
orbit presented in later sections. Let the complex vector

w(t) = (U(t), U̇(t))T,

then in free flight the system satisfies the ordinary differential equation

ẇ(t) = Aw(t) + b, if |U| ≤ 1 (3.1)

where the matrix A and the vector b are constant and are defined by

A =
(

0 1
1 − ω2 − iγ −γ − 2i

)
and b =

(
0

ρ eiφ

)
. (3.2)

Assume an impact occurs, i.e. |U| = 1, at time ti. The set of the states w at impact is referred to
as the impact surface Σ = {w : |U| = 1}. It follows from (2.14), (2.15) that the reset law R, mapping
wi,− to wi,+, takes the form

w(ti,+) = R(w(ti,−)) ≡ w(ti,−) −
(

0
qṙi,−U(ti)

)
. (3.3)

For convenience, we introduce the simplified notation w(ti,±) =: wi,±.
As the flow equation (3.1) is linear and the vector b is a constant the general solution with

initial conditions wi,+ can be written as

w(t) = S(t − ti,+, wi,+) ≡ exp(A(t − ti,+))(wi,+ + A−1b) − A−1b, if |U| ≤ 1. (3.4)

The eigenvalues λ± of the matrix A are given by

λ± =
−γ + i

(
−2 ±

√
4ω2 − γ 2

)
2

(3.5)

with real part Re(λ±) = −γ /2< 0, as we assume (given the experimentally defined values) that
0< γ < 2ω. It is immediate from this calculation that the trajectories of the magnetic bearing
system between impacts depend smoothly upon the initial data in an explicitly calculable manner.

A systematic approach to studying the impacting dynamics of the magnetic bearing problem
is to consider the associated map relating one impact event to the next. To do this, consider an
orbit with state vector immediately before an impact at time ti,− given by wi,− with |Ui| = 1 and
ṙi,− > 0. At the point of impact, we may now apply the reset law R in (3.3) to give the new state
vector wi,+ immediately after the impact at time ti,+. As ṙi,+ < 0, such initial conditions lead to a
trajectory described by the flow map S, initially lying inside the TDB. After a first time interval
t ∈ (ti, ti+1) with the period T = ti+1 − ti > 0 (which may possibly be infinite), the orbit will impact
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again with the TDB at time ti+1 when |Ui+1| = 1. Provided that ri+1,− > 0 (a non-grazing or a
transversal intersection), then T itself depends in a smooth manner upon the initial data [10], but
it is, in general, a nonlinear function of these, which cannot be calculated explicitly. The impact
map PI :Σ →Σ is then defined by

wi+1,− = PI(wi,−) ≡ S(ti+1 − ti, R(wi,−)).

This map is uniquely defined provided that ṙi,− > 0 and is smooth provided that ṙi+1,− > 0 [10].
The cases, for which ṙi+1 = 0 are grazing events, and mark dramatic changes in the stability of
the system, which we will not be considering in this paper. The advantage of this construction
is that we can reduce the dimension of the problem by one as the radial coordinate r ≡ |U| = 1 at
impact. We note that this is just one of many maps, which can describe the system. An alternative
is the stroboscopic map [10], which samples the system at the periodic time intervals and must
be augmented, typically through additional saltation matrices, to allow for the effects of impacts.
Such maps are useful in understanding the dynamics when the system involves grazing.

The dynamics of the rotor, experiencing impacts, can now be described in general, in terms of
successive iterates of the map PI. We now highlight the different possible motions of the rotor.

(b) Equilibria
In the absence of impacts it follows immediately from (3.1), and the negative real part of the
eigenvalues of A, that there is an asymptotically stable equilibrium solution w = w∗ of the flow
equation (3.1), which satisfies the condition

ṙ = θ̇ = 0. (3.6)

This is given by

w∗ ≡ (U∗, U̇∗)T = −A−1b =
(

ρ eiφ

ω2 − 1 + iγ
, 0

)T

. (3.7)

Let γ ∗ =
√
ρ2 − (1 − ω2)2. Depending on the bifurcation parameter γ this equilibrium can lie

either

(i) inside the TDB (r ≡ |U|< 1), if γ > γ ∗. This equilibrium, w = w∗ =: w∗
r , is physically

realistic; we denote this steady state as admissible,
(ii) on the TDB (r = 1), if γ = γ ∗. The point w = w∗ =: w∗

B, γ = γ ∗ is referred to as a boundary
equilibrium point or

(iii) outside the TDB (r> 1), if γ < γ ∗. This equilibrium is physically unrealistic, and we
denote this steady state as virtual.

By extension, this nomenclature is implemented for other orbits, so that a periodic orbit is virtual,
if it wholly or in part lies outside of the TDB. In Case (i), the motion is called synchronous non-
contacting whirl (figure 2a). Case (ii) describes the critical transition point between physically
realistic (Case (i)) and physically unrealistic non-impacting equilibria (Case (iii)). At a boundary
equilibrium point, the admissible equilibrium may bifurcate into more complicated rotor
trajectories, such as those involving continuous (zero normal velocity and non-negative normal
acceleration) or instantaneous rotor-TDB contact. Then this point is referred to as a BEB. When the
rotor and TDB are in continuous contact, sliding or pure rolling are possible [22]. The tangential
slip velocity between the rotor and TDB may be extended from (2.3) to cover continuous contact

using vrel(τ ) = RΩ + cr
˙̃
θ (τ ). Forward whirl rotor orbits correspond with ˙̃

θ (τ )> 0 and backward

whirl orbits with ˙̃
θ (τ )< 0. In terms of the scaled polar coordinate in the co-rotating frame,

these orbits correspond with θ̇ (t)>−1 and θ̇ (t)<−1, respectively. Synchronous forward whirl
occurs when θ̇ (t) = 0, which is the condition for the equilibrium given in (3.6), in which case the
tangential slip velocity vrel(τ ) = (R + cr)Ω is always positive. The slip velocity only changes sign
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Figure 2. Orbits with period T in the inertial frame (Z), the co-rotating frame (U), and where r(t) is against time t. An impact
occurs if r ≡ |Z| ≡ |U| = 1. (a) Admissible equilibriumwithout impact (γ = 0.3). (b) Impacting limit cycle B1,d near grazing
(γ = 0.065). (c) Impacting limit cycle B1,a near NSH bifurcation, (γ = 0.1).

when ˙̃
θ (τ ) = −RΩ/cr, which corresponds to pure rolling with θ̇ (t) = −(R + cr)/cr. The implication

of this is that the contact friction will have the same tangential sense in opposing the rotation for
most rub conditions, apart from those in which the backward orbit angular velocity is less than
θ̇ (t) = −(R + cr)/cr. In practice, forward rubs are relatively common events, while the backward
whirl conditions involving pure rolling are infrequent and tend to coincide with mechanical
failure due to the high contact forces that coexist. For this reason, we consider only synchronous
forward whirl rubbing. Continuous contact motions are not studied in this paper as the reset law
is not sufficient to describe such behaviour and how it arises, but more detail is given in [42].

(c) Periodic orbits with impact
We will consider periodic impacting motions of the rotor and their bifurcations from boundary
equilibrium states. When the rotor experiences an instantaneous contact with the TDB it can lead
to orbits that impact periodically or quasi-periodically and synchronously in the co-rotating frame
(figure 2b,c). We call these period T synchronously impacting limit cycles as the orbit experiences one
impact per period T. Such orbits have been observed in numerical experiments reported in [22],
where they are found to either be globally attracting or to have large basins of attraction. As we
shall see in §4, limit cycles with small amplitude (as shown in figure 2c) are created in an NSH-
type bifurcation from a boundary equilibrium as parameters in the system vary. Limit cycles with
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large amplitude (figure 2b) can also exist, and these can both experience smooth bifurcations (fold,
period-doubling, homoclinic, etc.) or can change at (discontinuity-induced) grazing bifurcations
[11], when the trajectory interacts tangentially with the boundary of the bearing.

A systematic way of analysing such periodic motions with instantaneous impact, is to consider
them as periodic orbits of the map PI. Such an approach is very suitable for finding both the
existence and the stability of periodic orbits [10] and we will adopt it here. In this framework,
single impact orbits are simply fixed points of PI so that

wi+1,− = PI(wi,−) = wi,−. (3.8)

Given the known form of both the flow map S between impacts and the reset law R, the
condition (3.8) leads to a system of algebraic equations, which includes finding the time of flight
T. We will consider this system in §4, and its linearization, in §5.

(d) Other dynamics
In addition to periodic [21,42] or quasi-periodic orbits [20,42], it has been shown that in similar
models the rotor–stator interaction can be chaotic [20,42]. Other types of motion can include an
accumulation of an infinite number of impacts (with the impact velocity decreasing in a geometric
progression), in a finite time [20,42,43]. This behaviour, which arises when the rotor is being forced
towards the TDB at the same time as it rebounds from it, is often called chattering [44–46] in the
context of impact dynamics. Chattering can lead to sticking [46] and sliding motion [10] and
hence can be used to predict the onset of continuous contact motion without actually computing
continuous contact trajectories. It is closely related to the Zeno-type accumulation behaviour
found in hybrid systems [8] but differs from chattering in discontinuous control problems,
where an orbit repeatedly crosses the surface across which the control system is discontinuous
[47]. Li & Païdoussis [20] have used this behaviour to identify for what values of coefficient of
friction, μ, and eccentricity, ec, continuous contact motion occurs. Similarly, the occurrence of
chattering sequences and the possibly resulting continuous contact also depends on damping,
c, and stiffness, k, parameters [42]. Such, particle motion involving continuous contact over an
open time interval, can best be systematically described by set valued functions instead of hybrid
systems. These types of models, called differential inclusion are particularly well suited to analyse
problems involving only friction, e.g. sliding and sticking motion of rotating particles [48]. Such
a model, a forced rotating pendulum in continuous contact with a circular boundary, shows
similar features to ours in that various orbits collapse onto the equilibrium set in finite time [49].
While it is certainly possible that such chattering and sticking motions may arise in a magnetic
bearing system, in this paper we will restrict our analysis to that of the simpler types of periodic
motion described.

4. Global analysis of synchronously impacting limit cycles
In this section, we derive the existence conditions for the simplest type of limit cycles for the
full system, in which the periodic orbits have one instantaneous impact synchronous with the
co-rotating frame. These are supported by numerical calculations. We show that these invariant
sets undergo both smooth fold bifurcations and discontinuity-induced NSH-like bifurcations,
where they are created in pairs at a BEB simultaneously with the admissible equilibrium w = w∗

R.
In §5, we give a local analysis of the latter bifurcation in a more general setting. We also
discuss the stability of these limit cycles in §4a and the codimension-2 bifurcations related to
the Hopf-type bifurcation (with dependence on the scaled stiffness parameter ω) in §4b. These,
period T periodically impacting limit cycles, experience one impact per cycle with identical
impact velocity U̇(ti,−) at each impact event at time ti for i = 0, 1, 2 . . .. We further assume that
these impacts occur synchronously with respect to the co-rotating frame. As a consequence, the
impact position U(ti) is identical at each impact at time ti and satisfies the repeatable initial
conditions between consecutive impacts at time ti and ti+1 given by condition (3.8). It follows



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140490

...................................................

that, in polar coordinates, the radial and angular velocity components must satisfy ṙi,− = ṙi+1,−
and θ̇i,− = θ̇i+1,−. We will show that for certain values of the scaled damping parameter, γ , a
finite number of such limit cycles coexist with the admissible equilibrium w = w∗

R. We will then
demonstrate that only one set of a pair of physically plausible limit cycles with different period
T undergoes a DIB at the BEB point when γ = γ ∗ =: γDIB. That bifurcation will be shown to be
of NSH type, as two limit cycles collide with the boundary equilibrium point w = w∗

B, as their
amplitude shrinks to zero. We conclude §4 with determining for which parameter value, γ , these
limit cycles are admissible and stable.

To find fixed points, w0,− satisfying (3.8), we substitute the initial condition w0,+ into the
general solution of the flow given by (3.4) to obtain

w0,− = exp(AT)(w0,+ + A−1b) − A−1b,

where A and b are given in (3.2), and where the real part of the eigenvalues of A, given in (3.5),
is negative, i.e. Re(λ±) = −γ /2< 0 for γ > 0. Next, we apply the reset map and substitute w0,+ =
R(w0,−) from (3.3) to obtain, after some manipulation, the fixed point equation

w0,− = −(exp(−AT) − I)−1

(
0

qṙ0,−U0

)
− A−1b. (4.1)

The matrix expression can be simplified further by considering the eigendecomposition of
A = VDV−1. Then

(exp(−AT) − I)−1 = 1
1 − tr(exp(AT)) + det(exp(AT))

(exp(AT) − det(exp(AT))I)

= 1
1 − tr(exp(DT)) + exp(tr(AT))

(exp(AT) − exp(tr(AT))I)

by Jacobi’s formula. Finally, we can use the eigenvalues of A, λ+ and λ−, given in (3.5), to obtain

(exp(−AT) − I)−1 = κ

(
ν−eλ+T − ν+eλ−T − eΛT ν+ν−(eλ−T − eλ+T)

eλ+T − eλ−T ν−eλ−T − ν+eλ+T − eΛT

)

=:

(
a11(T) a12(T)
a21(T) a22(T)

)
,

where Λ= λ+ + λ−, ν± = −λ±/(1 − ω2 − iγ ) and κ = 1/((1 − eλ−T)(1 − eλ+T)(ν− − ν+)). Hence
substituting this matrix into (4.1) simplifies to

w0,− ≡
(

U0
U̇0,−

)
≡
(

eiθ0

ṙ0,− + iθ̇0,−)U0

)
=
(

−qa12(T)ṙ0,−U0 + K
−qa22(T)ṙ0,−U0

)
, (4.2)

where K = ρ eiφ/(ω2 − 1 + iγ ). The system (4.2) yields three equations by solving the first row
equation for U0, taking the real part of the second row equation and solving it for ṙ0,−, and taking
the imaginary part of the second row equation, respectively,

U0(1 + a12(T)qṙ0,−) = K, (4.3)

ṙ0,−(1 + Re(qa22(T))) = 0 (4.4)

and θ̇0,− = − Im(qa22(T))ṙ0,−. (4.5)

To determine the fixed points w0,− from (4.2), we first find the period T, unknown a priori, from
(4.4) and then compute the corresponding values ṙ0,− from (4.3), θ0 from (4.3) and θ̇0,− from (4.5).
Now, (4.4) is satisfied if ṙ0,− is zero, which only yields the boundary equilibrium w∗

B, or if the
nonlinear term in T, denote it by F1(T), is zero. Hence the period T can be determined by finding
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the zeros of F1(T), given by

F1(T) := 1 + Re(qa22(T)) = 1 − Re

(
q

λ+ − λ−

(
λ+eλ+T

eλ+T − 1
− λ−eλ−T

eλ−T − 1

))

= 1 + d̃e−γT/2

2s1

(
s−

2 eγT/2 − 2s−
3 eγT cos(s−

4 T + ζ−)

1 + eγT − 2 eγT/2 cos(s−
4 T)

+ −s+
2 eγT/2 + 2s+

3 eγT cos(s+
4 T + ζ+)

1 + eγT − 2eγT/2 cos(s+
4 T)

)
,

(4.6)

where d̃ = 1 + d, s1 =
√

4ω2 − γ 2, s∓
2 = 2 ∓ s1 + γμ, s∓

3 =
√

(1 + μ2)(1 + ω2 ∓ s1), s∓
4 = (∓2 + s1)

T/2, s∓
5 = ±γ + (∓2 + s1)μ and ζ∓ = 2 arctan(s∓

5 /(s
∓
3 + s∓

2 )).
We now consider the analytic form of F1(T). It is evident from (4.6) that it is oscillatory in T. If

γ > 0 then the oscillations have decreasing amplitude as the period T increases and F1(T) tends to
one as T tends to infinity. If T is fixed and γ > 0 increases, then the amplitude of the oscillations
also decreases to zero. Furthermore, if we fix γ and assume that T is large, then

F1(T) ≈ 1 + (1 + d) e−γT/2

s1
(−s−

3 cos(s−
4 T + ζ−) + s+

3 cos(s+
4 T + ζ+)) (4.7)

and is bounded, i.e. F−
1 (T)< F1(T)< F+

1 (T), where

F±
1 (T) = 1 ± (1 + d) e−γT/2

s1
(s−

3 + s+
3 ). (4.8)

The upper and lower bounds F±
1 (T) are positive for all large T. Therefore, for fixed parameters,

and if γ > 0 the nonlinear function F1(T) has finitely many zeros. This is consistent with the plots
presented in figure 3a. As γ decreases and the amplitude of the oscillations of F1 increase then
more zeros arise pairwise. Moreover, if γ is zero then F1(T) is purely oscillatory and hence has
infinitely many zeros. The period T depends on the damping parameter, γ , the stiffness, ω, the
coefficient of restitution, d and the coefficient of friction,μ. Therefore varying the scaled unbalance
radius ρ, or unbalance angle φ will not affect it. We illustrate the period’s dependence on γ in a
bifurcation plot for fixed parameters ω= 0.76, d = 0.95 and μ= 0.15 (figure 3a). This figure not
only illustrates the existence of a finite number of zeros for γ ∈ (0, γF,1 ≈ 0.178) and hence of fixed
points of the map PI of a period T, but also shows that no such fixed points exist otherwise. The
next variable, normal impact velocity, ṙ0,−, can now be determined from T by taking the absolute
value of (4.3) and solving for ṙ0,−. Then for each value of the period T, ṙ0,− has two solutions ṙ0,−,a
and ṙ0,−,c given by

ṙ0,−,c/a(T) =
−g(T) ±

√
g(T)2 − |q|2|a12(T)|2(1 − |K|2)

|q|2|a12(T)|2 , (4.9)

where g(T) = (1 + d)(Re(a12(T)) − μ Im(a12(T))). However, we observe that these solutions may
themselves coalesce at a fixed bifurcation at γ = γ−

F ≈ −0.497 (figure 4a). But as γ−
F is negative

it has no physical context on the application. As γ is increased these two branches persist
under varying stability and admissibility. A fixed point is potentially admissible if the rotor is
approaching the impact surface from within the clearance circle, i.e. ṙ0,− > 0. Otherwise (ṙ0,− < 0),
it is virtual. Note that one of the radial velocities (4.9) becomes zero if 1 − |K|2 = 0, i.e. when γ = γ ∗.
From figure 4, it is evident that only low radial impact velocity fixed points undergo a sign change
in ṙ0,−. The angle at impact θ0 and the angular impact velocity θ̇0,−, do not need any constraints
imposed upon them to ensure admissibility. From (4.3) and (4.5), we obtain their expressions,
respectively,

θ0(T, ṙ0,−) = Arg
(

K
1 + a12(T)qṙ0,−

)
(4.10)
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R (dot) and the two limit cycles B1,a and B1,b. Fixed parameters
in a–c :ω= 0.76, d = 0.95 andμ= 0.15.

and

θ̇0,−(T, ṙ0,−) = − Im(qa22(T))ṙ0,−, (4.11)

which are determined by T and ṙ0,−. Note that the unbalance phase φ has no effect on the fixed
points, i.e. it shifts the angle at impact θ0 but does not change the nature of the dynamics.
In fact, φ could have been scaled out of the equation. Using these values, we can check the
(equivalent scaled) condition for the relative angular velocity, (2.3), to ensure that the relative
angular velocity does not change at impact, and hence that we have a consistent law for the
impact. The relative tangential velocity vrel,− at the contact point CP immediately before impact is
given by vrel,− =Ωcr(R/cr + θ̇i,−), and immediately after the impact (by applying the reset law) is
vrel,+ =Ωcr(R/cr + θ̇i,+) =Ωcr(R/cr + θ̇i,− − μ(1 + d)ṙi,−). Both conditions are necessary to avoid
an unphysical increase in the kinetic energy and for the three impact models (kinetic, kinematic
and energetic) to be equivalent. Since ṙi,− > 0 prior to an impact, both conditions are satisfied
when vrel,i,+ > 0, which reduces to θ̇i,− >−R/cr + μ(1 + d)ṙi,−. Given the parameters stated earlier,
and supposing that 0< ṙi,− < 50, both conditions hold in the scaled coordinates when the angular
velocity θ̇i,− has a value greater than −40. We can see from the values given in figure 4c,d that
these conditions on ṙi,− and θ̇i,− are easily satisfied for all the examples considered. We can now
summarize the main result concerning the period T periodic points. Let T0,n,m denote a zero of
F1(T0,n,m), where n ∈ {1, . . . , N} denotes the branch pair number and m ∈ {a, b, c, d} denotes the
branch pair with corresponding ṙ0,− solution. The pair of largest zeros T is denoted by n = N,
T0,N,m, e.g N = 1 for γ = 0.1 (figure 4b). We introduce the simplified notation ṙ0,−(T0,n,m) = ṙ0,−,n,m,
θ0(T0,n,m, ṙ0,−,n,m) = θ0,n,m and θ̇0,−(T0,n,m, ṙ0,−,n,m) = θ̇0,−,n,m.
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Proposition 4.1. Let n ∈ {1, . . . , N} and m ∈ {a, b, c, d}. If there exists a period T0,n,m such that

F1(T0,n,m) = 0

then there are finitely many (up to 2N), period T fixed points Bn,m of the map PI (corresponding to periodic
orbits) given by

Bn,m = (T0,n,m, θ0,n,m, ṙ0,−,n,m, θ̇0,−,n,m) (4.12)

with T0,n,m, θ0,n,m, ṙ0,−,n,m and θ0,−,n,m determined by the equations (4.6), (4.10), (4.9) and (4.11),
respectively. Two pairs of fixed points, Bn,a and Bn,c, and Bn,b and Bn,d, have the same period, i.e. T0,n,a ≡
T0,n,c and T0,n,b ≡ T0,n,d. If γ ∈ (0, γ ∗) then half of the fixed points, Bn,a and Bn,b, are virtual and the other
half, Bn,c and Bn,d, are admissible.

Proof. If the damping coefficient γ > 0 then, as stated above, F1(T) has finitely many zeros T0,n,m.
Now, let n ∈ {1, . . . , N} and m ∈ {a, b, c, d}. Then for each T0,n,a two normal impact velocities, ṙ0,−,n,a
and ṙ0,−,n,c can be computed from (4.9) and hence θ0,n,a and θ0,n,c from (4.10) and θ̇0,−,n,a and θ̇0,−,n,c
(4.11). Thus, we obtain two different periodic points, Bn,a and Bn,c given by (4.12), with the period
T0,n,a. For the purpose of nomenclature set T0,n,c = T0,n,a. Owing to the oscillatory character of
F1(T) its zeros arise pairwise, i.e. there exists a second zero T0,n,b. Assume that T0,n,b 
= T0,n,a then
the equivalent result follows for Bn,b and Bn,d.
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Assume γ ∈ (0, γ ∗) then |K|2 > 1. Assume further that there exists a period T0,n,a. Consider

ṙ0,−,n,a := ṙ0,−(T0,n,a) =
−g −

√
g2 − |q|2|a12|2(1 − |K|2)

|q|2|a12|2
<

−g − |g|
|q|2|a12|2

≤ 0.

Similarly,

ṙ0,−,n,c := ṙ0,−(T0,n,a) =
−g +

√
g2 − |q|2|a12|2(1 − |K|2)

|q|2|a12|2
>

−g + |g|
|q|2|a12|2

≥ 0.

The same holds for the period T0,n,b. Therefore, the fixed points Bn,a and Bn,b are virtual but Bn,c

and Bn,d are admissible. �

Proposition 4.2. Let n ∈ {1, . . . , N} and assume that the fixed points Bn,m exist for all m ∈ {a, b, c, d}.
Then at γ = γF,n for fixed n, there are two simultaneous smooth fold bifurcations, to which the fixed points
coalesce, i.e. Bn,a and Bn,b meet at the first fold and Bn,c and Bn,d at the other.

Proof. As stated above, the function F1 has finitely many zeros for any γ > 0 and an infinite
number as γ → 0. Furthermore, F1 is a smooth function of γ and has regular quadratic minima.
It follows, that as γ decreases, then zeros arise pairwise at regular fold bifurcations at points γF,n.
Let n ∈ {1, . . . , N} and m ∈ {a, b, c, d}. Assume 0< γ < γF,n and that the fixed points Bn,m exist. Then
there exist γ , T0,n,a ≡ T0,n,c and T0,n,b ≡ T0,n,d with T0,n,a 
= T0,n,b such that

F1(T0,n,a, γ ) = F1(T0,n,b, γ ) = 0,

as F1(T) is oscillatory with decreasing amplitude due to γ > 0. By the continuity of F1(T, γ ) there
exists γ = γF,n such that T0,n,a = T0,n,b =: T0,n,F. Then for each n and T = T0,n,F there exist two fixed
points Bn,a and Bn,c. For γ > γF,n the nonlinear function F1(T) has no zeros. Hence for each n two
pairs of fixed points coincide at γ = γF,n, i.e. Bn,a and Bn,b bifurcate in a smooth fold bifurcation
and so do Bn,c and Bn,d. �

A numerical example of the this bifurcation at γ = γF,n is depicted in figures 3 and 4a.
We now consider the question of admissibility of the orbits. If 0< γF,N < γ

∗ then the low impact
velocity branches Bn,a and Bn,b are virtual for all n, whereas the other two, Bn,c and Bn,d are
admissible by proposition 4.1. However, in the other case, γF,N > γ

∗, further information about
ṙ0,−,n,m is required. If ṙ0,−,n,m is increasing as γ is increasing then all four fixed point sets are
admissible. Otherwise they are virtual. In either case, the normal velocity ṙ0,− of a pair of fixed
points, m = a, b or c, d, changes sign (figure 4b) leading one to anticipate a DIB, setting the scene
for the main result of this paper. We call this a subcritical NSH bifurcation.

Proposition 4.3. Let n ∈ {1, . . . , N} and assume that the fixed points Bn,m exist ∀m = a, b, c, d. Assume
further that γF,1 > γ

∗, and that ṙ0,−,1,m is increasing as the damping parameter γ is increasing. Then at
the BEB point,

γ = γ ∗ =: γDIB,

a more general DIB occurs. The limit cycles corresponding to the fixed point pairs, Bn,a and Bn,b, clash
with the admissible equilibrium w = w∗

R. As γ decreases through γDIB the three invariant sets switch from
being admissible to virtual.

Proof. Let γ = γ ∗. Then either ṙ0,−,n,a = 0 or ṙ0,−,n,c = 0 by (4.9). Consequently, by (4.1), it follows
that

w0,− = −A−1b =
(

K
0

)
= w0,+.

Therefore, the fixed point of PI corresponds to the boundary equilibrium solution w = w∗
B. Hence

the impact velocity ṙ0,−,n,a = 0 increases as γ increases from γ ∗, and it undergoes a sign change
corresponding to the limit cycle transitioning from physically implausible to plausible. It follows
that the two limits cycles Bn,a and Bn,b and the admissible equilibrium w∗

R clash at the BEB point
γ = γDIB. �
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Figure 5. Bifurcation diagram of γ against local extrema of r(t) for t ∈ (t0, t1) for fixed point pairs (a) B1,a and B1,b and (b) B1,c
and B1,d . (γF,1 ≈ 0.178 (triangles)). In (a), we also plot the admissible equilibrium w = w∗

R to illustrate the NSH bifurcation
at γDIB ≈ 0.072 (circles). (b) depicts a grazing bifurcation at γ ≈ 0.0636 (squares) after an increase in the number of local
extrema of r(t) at γ = 0.0785 (diamonds).

A schematic illustrating this phenomenon in (r, θ ) phase space is given in figure 3c. Our
statement is further supported by numerical examples such as figure 5a where the limit cycles
corresponding to fixed points B1,a and B1,b are depicted. Their amplitudes, min(r(t)) between
impacts at times ti and ti+1, increase as γ decreases and clash with the admissible equilibrium
w = w∗

R. Although we have identified under what conditions pairs of fixed points Bn,m are
admissible, their physical plausibility is not guaranteed as it is possible that between impacts
the corresponding limit cycle trajectory has a further impact, figure 2b. Therefore, while in our
global analysis we have derived the necessary existence condition for such limit cycles, further
sufficient conditions are necessary as large amplitude limit cycles can undergo a grazing event
[11]. In order to demonstrate whether such an impact occurs, we present the numerical analysis
for our model example. We compute the trajectories of the corresponding fixed points B1,m
and plot all local extrema of r(t) between impacts t ∈ (ti, ti+1) (figure 5). The branches, B1,a, B1,b
and B1,c are not affected by this phenomenon unlike the limit cycle corresponding to the fixed
point B1,d. As γ is decreased, a grazing event [11] (orbit lies tangential to Σ with zero normal
impact velocity) occurs, i.e. amplitude r(t) crosses the impact surface when γ = γgraze ≈ 0.0636
(figure 5b). Furthermore, these numerical calculations indicate that fixed point pairs with high
normal impact velocity, Bn,c and Bn,d with n> 1, are virtual. To see this, note that as n increases T
increases allowing more time for the orbit to exceed the impact surface, which leads to a virtual
orbit, [42]. In §5, we extend this result using a local linearized system to give more precise results.

(a) Stability analysis
We present a stability analysis of the limit cycles considered as fixed points of the impact map PI.
In particular, we focus on the first pair of fixed points, i.e. B1,m with m = a, b, c, d, as these are the
only physically plausible cases, as shown earlier in this section. Their stability is determined by
the eigenvalues λ̃ of the Jacobian matrix of PI given (in polar form) by

J(B1,m) = ∂(θ1, ṙ1,−, θ̇1,−)
∂(θ0, ṙ0,−, θ̇0,−)

.

As PI has a relatively simple analytic form, this matrix can be calculated explicitly and its
eigenvalues evaluated numerically. In figure 6a, we present max(|λ̃|) of the four fixed points
illustrating that B1,a, B1,b and B1,c are unstable for all γ and that B1,d is quasi-periodically stable
for γ ∈ (0.083, γF,1) but unstable otherwise. Taking into account the results from this section,
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it is evident that as γ decreases from γF,1 the fixed point B1,d becomes unstable before it
undergoes grazing.

(b) Codimension-2 bifurcation
We complete this section with a codimension-2 bifurcation analysis studying the coalescence
of various bifurcation points. Of interest is the influence of other parameters on the NSH-type
bifurcation. Certain TDB parameters are constrained due to the system’s characteristics such as
coefficient of friction, μ, or restitution, d, which are governed by material properties. Magnetic
bearing stiffness, however, can be more easily adjusted through the PID control. Hence we have
chosen ω to be the second bifurcation parameter. For our particular example, μ= 0.15, d = 0.95
and ρ = 3/7, we analyse the smooth fold at γ = γF,1 of the first fixed point set B1,m and the DIB
point, γ = γDIB, as we vary γ and ω (figure 6b). This shows that γF,1 and γ ∗ coincide at γ ≈ 0.178
and ω≈ 0.781, and that four critical regions can be identified:

R1: The three invariant sets w∗, B1,a and B1,b are virtual, whereas B1,c and B1,d are admissible.
R2: The equilibrium w∗ is virtual and no fixed points of PI exist.
R3: The equilibrium w∗ is admissible, i.e. w∗ = w∗

R, and no fixed points of PI exist.
R4: All invariant sets B1,m and w∗ are admissible, i.e. w∗ = w∗

R.

For values of γ and ω on the boundary between regions R2 and R3, the curve γ ∗, a BEB is observed
of the admissible equilibrium w = w∗

R. The smooth fold bifurcation of the fixed points of PI is
observed for values of γ and ω, which lie on the boundary between regions R1 and R2, and R3
and R4, i.e. the curve γF,1. The NSH bifurcation occurs for values on the boundary between regions
R1 and R4, i.e. the curve γDIB. We note that the limit cycle corresponding to the fixed point B1,d
undergoes a grazing event in regions R1 and R2, which is not included in figure 6b. Identifying
this grazing set is part of future work.

5. Generalized local analysis of the Hopf-type bifurcation
The global analysis of this specific nonlinear system implies that limit cycles bifurcate in pairs at
an NSH-type bifurcation from a boundary equilibrium point. We now examine this bifurcation
in more detail by considering a local linearization of the system close to the bifurcation point.
This allows us to perform the local analysis for a more general system, which includes that
discussed in §4. The purpose of this section is twofold. Firstly, we can establish the conditions
for the existence of two fixed point solutions of the impact map PI with period T given by the
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solutions of the equation (5.4). Secondly, we also obtain a more precise description of the local
behaviour of the periodic solutions. We find that the estimates obtained by this analysis agree
well with the calculations given in §4. To do this local analysis, we consider the complex linear
differential equation in w = (u, u̇), with u = r exp(iθ ), given by

ẇ = Aw + b in |u|<σ (5.1)

with σ > 0 and complex valued parameters α, β and Γ , where

A =
(

0 1
−β −α

)
and b =

(
0
Γ

)
.

If |u| = σ , then a reset law is applied, which is given by

u̇+ − u̇− = −(1 + d)(1 + iμ) Re(u∗u̇−)
u

|u|2 . (5.2)

Our basic assumptions (derived from §4) are that there exist parameters α0, β0 and Γ0 such
that |Γ0/β0| = σ and that the eigenvalues of the matrix A have negative real part. These conditions
imply that at the critical parameters there is a stable boundary equilibrium as is the case for the
magnetic bearing system problem.

We now consider the dynamical behaviour of solutions, which are small perturbations to this
situation. To do this, we introduce a small real parameter ε and consider the perturbed system
coefficients (5.1) with

α ∼ α0 + εα1, β ∼ β0 + εβ1 and Γ ∼ Γ0 + εΓ1

and the same reset law (5.2). From here onwards we use the symbol ∼ to denote equality up to
the stated order in ε. We pose the asymptotic solution

u(t) ∼ u0 + εu1(t), or w(t) = w0 + εw1(t)

with u0 = Γ0/β0 = σ eiΨ , defining the phase Ψ of u0, and u1(t) = r1(t) eiθ1(t). At order ε

ẇ1 ∼ A0w1 + b1 in |u|<σ ,

where

A0 =
(

0 1
−β0 −α0

)
and b1 =

(
0

Γ1 − β1z0

)

and |u|<σ becomes |σ + εr1(t) ei(θ1(t)−Ψ )| or

εr1(t) cos(θ1(t) − Ψ )< 0.

There is an equilibrium at u0 = Γ0/β0, u1 = (Γ1 − β1u0)/β0. Defining real constants c and ψ by

u1 = Γ1β0 − β1Γ0

β2
0

= c eiψ

the equilibrium lies in the region |u|<σ , and hence is admissible, if

εc cos(ψ − Ψ )< 0.

In order to find a choice for ε, we look at the magnetic bearing system example, for which
β0 =ω2 − 1 + iγ ∗, β1 = i, Γ0 = ρ eiφ and Γ1 = 0. This leads to −2εγ ∗ < 0. As γ ∗ is positive the
equilibrium lies within the clearance circle if ε is negative. By choice of the sign of ε (and hence of
Γ1 and β0), we may assume that

cos(ψ − Ψ )< 0

and hence the stable equilibrium lies inside the clearance circle if ε > 0, but not otherwise. The
question we wish to answer is what happens if ε > 0 in this case.
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The general solution in the region |u|<σ at order ε is

w1(t) = exp(A(t − t0))(w1,0,+ + A−1
0 b1) − A−1

0 b1, (5.3)

where w1,0,+ = w1(t0+) denotes the post impact initial condition. Next, we need to find the reset
law at order ε and hence consider the impact position first

|u(t0)| = |σ eiΨ + cr1,0 eiθ1,0 | = σ .

This yields a constraint on the angle at impact

εcr1,0 cos(θ1,0 − Ψ ) = 0

or θ1,0 =Ψ + π/2. Deriving the reset law for the impact velocity components requires a few more
computations and we shall derive them in stages. Consider the right-hand side of (5.2) given by

Re(u∗(t0)u̇(t0,−))
u0

|u0|2
= −εr1,0θ̇1,0,−

σ
(σeiΨ + εr1,0 eiθ1,0 ) = −εr1,0θ̇1,0,− eiΨ ,

where we have substituted for θ1,0. As the left-hand side of (5.2) can be expressed in the form of

ε(i(ṙ1,0,+ − ṙ1,0,−) − r1(θ̇1,0,+ − θ̇1,0,−))

we can now equate the real and imaginary parts of (5.2) to find the reset law at order ε

u̇1,0,+ = u̇1,0,− + (1 + d)(1 + iμ)r1,0θ̇1,0,− eiθ1,0 .

As in the problem considered in §3, this system may have a variety of motions, possibly
including chattering behaviour. However, for the purposes of our analysis, we seek solutions,
which comprise a simple periodic orbit with a single impact. Thus, we look for a time of impact
t1 = t0 + T depending on the previous impact time t0 and the limit cycle period T. As described
in previous sections, such limit cycles satisfy repeatability conditions for position and velocity,
given by u(t0) = u(t1) and u̇(t0−) = u̇(t1−), respectively. The equivalent conditions at order ε are

u1(t0) = u1(t1) and u̇1(t0−) = u̇1(t1−).

Substituting these into the general solution (5.3), we can obtain the impact maps PI for the
perturbed orbit by solving for the initial condition w1,0,− = (u1,0, u̇1,0,−) that yields period T limit
cycles

w1,0,− = −A−1
0 b −

(
a11(T) a12(T)
a21(T) a22(T)

)(
0

i(1 + d)(1 + iμ)r1,0θ̇1,0,−

)
eiθ1,0 ,

where (
a11(T) a12(T)
a21(T) a22(T)

)
:= (exp(−A0T) − I)−1.

It follows, by using methods similar to those used in §4, that we can find the period T by solving
the nonlinear equation

F1(T) := 1 − (1 + d) Re((1 + iμ)a22(T)) = 0. (5.4)

A necessary condition for the existence of such periodic orbits is then given by the requirement
that the nonlinear problem (5.4) has a solution T. Note, that such a solution will then describe
a family of periodic orbits, parametrized by ε close to the bifurcation point. The period T of the
limit cycle depends only on the parameters at the BEB, i.e. α0 and β0, and the impact parameters
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μ and d. Then the other unknowns determined by T are given by

r1,0 = c(�3 cos(ψ − Ψ ) − �4 sin(ψ − Ψ ))
−�4

, θ̇1,0,− = cos(ψ − Ψ )
(1 + d)(�3 cos(ψ − Ψ ) − �4 sin(ψ − Ψ ))

ṙ1,0,− = c cos(ψ − Ψ ) Im((1 + iμ)a22(T))
�4

,

where �3 :=μRe(a12(T)) + Im(a12(T)) and �4 := Re(a12(T)) − μ Im(a12(T)). Hence it follows that the
linearized impact map PI is given by

θ (t0) := arg(z(t0)) =Ψ + r1,0

σ
ε, ṙ(t0,−) = −εr1,0θ̇1,0,− and θ̇ (t0,−) = εṙ1,0,−,

where the period T = t1 − t0 is a constant and does not depend on ε. If we let ε tend to zero then
θ (t0) tends to Ψ and both ṙ(t0−) and θ̇ (t0−) tend to zero, clearly indicating that the limit cycle
resulting from this impact map tends to the boundary equilibrium. Furthermore, as θ̇ tends to
zero, the consistency condition (2.4) must be satisfied for suitably small ε and hence the form
of the impact law is appropriate. Depending on the signs of the parameters, the normal impact
velocity switches sign and hence demonstrates the transition from admissible to virtual limit cycle
or vice versa giving rise to the NSH bifurcation. This linearization agrees with the global analysis
from §4 (figure 4b). Furthermore, this is evidence that the NSH bifurcation can be approximated
by a linear impact map in general.

6. Conclusion
A discontinuity-induced Hopf-type bifurcation has been shown to exist in rotating machines that
may experience impact and friction between a rotor and TDB under contact conditions. Using a
particular Poincaré map, the impact map, we have shown that at a subcritical NSH bifurcation,
two unstable limit cycles and a stable admissible equilibrium without impact, are created and
coexist. For a general linear complex system, the local analysis revealed that the impact map is
linear in the bifurcation parameter indicating that this phenomenon can be expected in higher
dimensional impacting systems.

Other typical impact dynamics such as grazing have been observed, which have to be studied
further to see if they are a route to chaos via a period adding cascade observed in the 1D
impact oscillators. We also conjecture that other Hopf-type bifurcations leading, for example,
to torus doubling as in [15,16] could be observed in this system. The rich dynamics studied in
this paper also revealed co-existing smooth fold bifurcations, which have not been reported in
impacting systems.

The results have revealed a significant range of the dynamics that may be experienced
in rotor/magnetic bearing systems. In practice, the dynamic responses that involve excessive
contact forces should be avoided and the analytical techniques developed enable quantitative
assessments to be made. It is recognized that simplifications have been made in the system
modelling. Future research should be directed towards the inclusion of multi-mode rotors and
the use of multiple magnetic bearings. It is also recommended that attention be paid to the
uncertainties associated with the contact mechanics, which will involve finite contact zones and
non-zero but finite durations of contact. The uncertainties in contact zones for multi-mode rotors
are associated with the variability of the rotor flexure at the point of contact. Such analysis should
be supported by experimental validation under precisely definable conditions of contact.

Acknowledgements. We are grateful to the anonymous referees for their helpful comments.
Funding statement. K.M. gratefully acknowledges the financial support of the EPSRC Doctoral Training Grant
(DTG) and the University of Bath. P.G. was partially funded by EPSRC grant EP/E050441/1 (CICADA).



22

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140490

...................................................

References
1. Schweitzer G. 2005 Safety and reliability aspects for active magnetic bearing applications—a

survey. P. I. Mech. Eng. I–J. Syst. 219, 383–392. (doi:10.1243/095965105X33491)
2. Leine RI, Nijmeijer H. 2004 Dynamics and bifurcations of non-smooth mechanical systems. Lecture

Notes in Applied and Computational Mechanics, vol. 18. Berlin, Germany: Springer.
3. Leine RI, van de Wouw N. 2008 Stability and convergence of mechanical systems with unilateral

constraints, vol. 36. Berlin, Germany: Springer.
4. Leine RI, van de Wouw N. 2008 Uniform convergence of monotone measure differential

inclusions: with application to the control of mechanical systems with unilateral constraints.
Int. J. Nonlinear Mech. 18, 1435–1457. (doi:10.1142/S0218127408021099)

5. Stewart DE. 1997 Existence of solutions to rigid body dynamics and the Painlevé paradoxes.
C. R. Acad. Sci. Paris Sér. I Math. 325, 689–693. (doi:10.1016/S0764-4442(97)84784-2)

6. Moreau JJ. 1988 Unilateral contact and dry friction in finite freedom dynamics. In CISM Non-
smooth mechanics and applications, vol. 302, pp. 1–82. Vienna, Austria: Springer.

7. Glocker C. 2001 Set-valued force laws. In Dynamics of non-smooth systems (ed. F Pfeiffer).
Lecture Notes in Applied Mechanics, vol. 1. Berlin, Germany: Springer.

8. Brogliato B. 1999 Nonsmooth mechanics, 2nd edn. London, UK: Springer.
9. van der Schaft AJ, Schumacher JM. 2000 An introduction to Hybrid dynamical systems. Lecture

notes in control and information sciences, vol. 251. London, UK: Springer.
10. di Bernardo M, Budd C, Champneys A, Kowalczyk P. 2008 Piecewise-smooth dynamical systems:

theory and applications. Applied Mathematical Sciences, vol. 163. London, UK: Springer.
11. Nordmark AB. 1991 Non-periodic motion caused by grazing incidence in an impact oscillator.

J. Sound Vib. 145, 279–297. (doi:10.1016/0022-460X(91)90592-8)
12. Nordmark AB, Dankowicz H, Champneys AR. 2009 Discontinuity-induced bifurcations in

systems with impacts and friction: discontinuities in the impact law. Int. J. Nonlinear Mech. 44,
1011–1023. (doi:10.1016/j.ijnonlinmec.2009.05.009)

13. di Bernardo M, Budd C, Champneys A, Kowalczyk P, Nordmark A, Tost G, Piiroinen
P. 2008 Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629–701.
(doi:10.1137/050625060)

14. di Bernardo M, Nordmark A, Olivar G. 2008 Discontinuity-induced bifurcations of
equilibria in piecewise-smooth and impacting dynamical systems. Physica D 237, 119–136.
(doi:10.1016/j.physd.2007.08.008)

15. Xie J, Ding W, Dowell EH, Virgin LN. 2005 Hopf–flip bifurcation of high dimensional
maps and application to vibro-impact systems. Acta Mech. Sin. 21, 402–410.
(doi:10.1007/s10409-005-0045-7)

16. Luo GW, Xie JH. 1998 Hopf bifurcation of a two-degree-of-freedom vibro-impact system.
J. Sound Vib. 213, 391–408. (doi:10.1006/jsvi.1997.1361)

17. Thompson JMT, Stewart HB. 2002 Nonlinear dynamics and chaos, 2nd edn. New York, NY: Wiley.
18. Leine RI, Van Campen DH. 2006 Bifurcation phenomena in non-smooth dynamical systems.

Eur. J. Mech. A Solids 25, 595–616. (doi:10.1016/j.euromechsol.2006.04.004)
19. Stronge WJ. 2004 Impact mechanics. Cambridge, UK: Cambridge University Press.
20. Li GX, Païdoussis MP. 1994 Impact phenomena of rotor-casing dynamical systems. Nonlinear

Dyn. 5, 53–70. (doi:10.1007/BF00045080)
21. Lu QS, Li QH, Twizell EH. 2003 The existence of periodic motions in rub-impact rotor systems.

J. Sound Vib. 264, 1127–1137. (doi:10.1016/S0022-460X(02)01386-X)
22. Keogh PS, Cole MOT. 2003 Rotor vibration with auxiliary bearing contact in magnetic bearing

systems. I. Synchronous dynamics. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 217, 377–392.
(doi:10.1243/095440603321509676)

23. Simpson DJW, Meiss JD. 2007 Andronov–Hopf bifurcations in planar, piecewise-smooth,
continuous flows. Phys. Lett. A 371, 213–220. (doi:10.1016/j.physleta.2007.06.046)

24. Jeffrey MR. 2012 Three discontinuity-induced bifurcations to destroy selfsustained oscillations
in a superconducting resonator. Phys. D 241, 2077–2082. (doi:10.1016/j.physd.2011.05.008)

25. Simpson DJW, Kompala DS, Meiss JD. 2009 Discontinuity induced bifurcations in a model of
Saccharomyces cerevisiae. Math. Biosci. 218, 40–49. (doi:10.1016/j.mbs.2008.12.005)

26. Maslen EH, Schweitzer G. 2009 Magnetic bearings: theory, design, and application to rotating
machinery. Berlin, Germany: Springer.

27. Bartha AR. 2000 Dry friction backward whirl of rotors. PhD thesis, ETH. Zürich, Switzerland.

http://dx.doi.org/doi:10.1243/095965105X33491
http://dx.doi.org/doi:10.1142/S0218127408021099
http://dx.doi.org/doi:10.1016/S0764-4442(97)84784-2
http://dx.doi.org/doi:10.1016/0022-460X(91)90592-8
http://dx.doi.org/doi:10.1016/j.ijnonlinmec.2009.05.009
http://dx.doi.org/doi:10.1137/050625060
http://dx.doi.org/doi:10.1016/j.physd.2007.08.008
http://dx.doi.org/doi:10.1007/s10409-005-0045-7
http://dx.doi.org/doi:10.1006/jsvi.1997.1361
http://dx.doi.org/doi:10.1016/j.euromechsol.2006.04.004
http://dx.doi.org/doi:10.1007/BF00045080
http://dx.doi.org/doi:10.1016/S0022-460X(02)01386-X
http://dx.doi.org/doi:10.1243/095440603321509676
http://dx.doi.org/doi:10.1016/j.physleta.2007.06.046
http://dx.doi.org/doi:10.1016/j.physd.2011.05.008
http://dx.doi.org/doi:10.1016/j.mbs.2008.12.005


23

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140490

...................................................

28. Black HF. 1968 Interaction of a whirling rotor with a vibrating stator across a clearance
annulus. J. Mech. Eng. Sci. 10, 1–12. (doi:10.1243/JMES_JOUR_1968_010_003_02)

29. Childs DW. 1979 Rub-induced parametric excitation in rotors. ASME J. Mech. Des. 101,
640–644. (doi:10.1115/1.3454114)

30. Childs DW. 1982 Fractional-frequency rotor motion due to nonsymmetric clearance effects.
ASME. J. Eng. Power 104, 533–541. (doi:10.1115/1.3227312)

31. Cole MOT. 2008 On stability of rotordynamic systems with rotor–stator contact interaction.
Proc. R. Soc. A 464, 3353–3375. (doi:10.1098/rspa.2008.0237)

32. Ehrich FF. 1965 Bistable vibration of rotors in bearing clearance. In ASME, Winter Annual
Meeting, Chicago, IL, USA. ASME 65-WA/MD-1. New York, NY: ASME.

33. Ehrich FF. 1988 High order subharmonic response of high speed rotors in bearing clearance.
ASME J. Vib. Acoust. Stress Reliab. Des. 110, 9–16. (doi:10.1115/1.3269488)

34. Johnson DC. 1962 Synchronous whirl of a vertical shaft having clearance in one bearing.
J. Mech. Eng. Sci. 4, 85–93. (doi:10.1243/JMES_JOUR_1962_004_012_02)

35. Kirk RG. 1999 Evaluation of AMB turbomachinery auxiliary bearings. ASME J. Vib. Acoust.
121, 156–161. (doi:10.1115/1.2893958)

36. Lawen JL, Flowers GT. 1997 Synchronous dynamics of a coupled shaft bearing housing system
with auxiliary support from a clearance bearing: analysis and experiment. ASME J. Eng. Gas
Turb. Power 119, 430–435. (doi:10.1115/1.2815593)

37. Muszynska A. 2002 Rotor-to-stationary part full annular contact modelling. In Proc. of 9th
Int. Symp. on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, 10–14
February. Hawaii: ISROMAC.

38. Muszynska A. 1984 Partial lateral rotor to stator rubs. In International Conference on Vibrations
in Rotating Machinery, 3rd, pp. 327–335. Heslington, UK.

39. Wang X, Noah S. 1998 Nonlinear dynamics of a magnetically supported rotor on safety
auxiliary bearings. ASME J. Vib. Acoust. 120, 596–606. (doi:10.1115/1.2893869)

40. Tessier LP. 1997 The development of an auxiliary bearing landing system for a flexible AMB-
supported hydrogen process compressor rotor. In Proc. of MAG 97, VA, pp. 120–128. Boca
Raton, FL: CRC Press.

41. Sun G, Palazzolo AB, Provenza A, Montague G. 2004 Detailed ball bearing model for magnetic
suspension auxiliary service. J. Sound Vib. 269, 933–963. (doi:10.1016/S0022-460X(03)00207-4)

42. Mora K. 2014 Non-smooth dynamical systems and applications. PhD thesis, University of
Bath, UK.

43. Feng ZC, Zhang XZ. 2002 Rubbing phenomena in rotor-stator contact. Chaos, Solitons Fract.
14, 257–267. (doi:10.1016/S0960-0779(01)00231-4)

44. Nordmark AB, Piiroinen PT. 2009 Simulation and stability analysis of impacting systems with
complete chattering. Nonlinear Dyn. 58, 85–106. (doi:10.1007/s11071-008-9463-y)

45. Nordmark AB, Dankowicz H, Champneys AR. 2011 Friction induced reversed chatter in rigid-
body mechanisms with impacts. IMA J. Appl. Math. 76, 85–119. (doi:10.1093/imamat/hxq068)

46. Budd CJ, Dux F. 1994 Chattering and related behaviour in impact oscillators. Phil. Trans. R.
Soc. Lond. A 347, 365–389. (doi:10.1098/rsta.1994.0049)

47. Bartolini G. 1989 Chattering phenomena in discontinuous control systems. Int. J. Syst. Sci. 20,
2471–2481. (doi:10.1080/00207728908910327)

48. Kunze M. 2000 Non-smooth dynamical systems. Lecture Notes in Mathematics, vol. 1744. Berlin,
Germany: Springer.

49. Biemond JJB, de Moura APS, Grebogi C, van de Wouw N, Nijmeijer H. Dynamical collapse of
trajectories. EPL Europhys. Lett. 98, 20001. (doi:10.1209/0295-5075/98/20001)

http://dx.doi.org/doi:10.1243/JMES_JOUR_1968_010_003_02
http://dx.doi.org/doi:10.1115/1.3454114
http://dx.doi.org/doi:10.1115/1.3227312
http://dx.doi.org/doi:10.1098/rspa.2008.0237
http://dx.doi.org/doi:10.1115/1.3269488
http://dx.doi.org/doi:10.1243/JMES_JOUR_1962_004_012_02
http://dx.doi.org/doi:10.1115/1.2893958
http://dx.doi.org/doi:10.1115/1.2815593
http://dx.doi.org/doi:10.1115/1.2893869
http://dx.doi.org/doi:10.1016/S0022-460X(03)00207-4
http://dx.doi.org/doi:10.1016/S0960-0779(01)00231-4
http://dx.doi.org/doi:10.1007/s11071-008-9463-y
http://dx.doi.org/doi:10.1093/imamat/hxq068
http://dx.doi.org/doi:10.1098/rsta.1994.0049
http://dx.doi.org/doi:10.1080/00207728908910327
http://dx.doi.org/doi:10.1209/0295-5075/98/20001

	Introduction
	Introduction to magnetic bearing systems and their associated dynamics
	Overview
	Free motion
	Motion with impacts

	Basic solution dynamics and associated maps
	Maps and flows
	Equilibria
	Periodic orbits with impact
	Other dynamics

	Global analysis of synchronously impacting limit cycles
	Stability analysis
	Codimension-2 bifurcation

	Generalized local analysis of the Hopf-type bifurcation
	Conclusion
	References

