547 research outputs found

    Colour confinement and dual superconductivity of the vacuum - I

    Get PDF
    We study dual superconductivity of the ground state of SU(2) gauge theory, in connection with confinement. We do that measuring on the lattice a disorder parameter describing condensation of monopoles. Confinement appears as a transition to dual superconductor, independent of the abelian projection defining monopoles. Some speculations are made on the existence of a more appropriate disorder parameter. A similar study for SU(3) is presented in a companion paper.Comment: Some typos corrected, acknowledgements added; to appear on Phys. Rev.

    MeltMigrator : a MATLAB-based software for modeling three-dimensional melt migration and crustal thickness variations at mid-ocean ridges following a rules-based approach

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 445–456, doi:10.1002/2016GC006686.MeltMigrator is a MATLABÂź-based melt migration software developed to process three-dimensional mantle temperature and velocity data from user-supplied numerical models of mid-ocean ridges, calculate melt production and melt migration trajectories in the mantle, estimate melt flux along plate boundaries, and predict crustal thickness distribution on the seafloor. MeltMigrator is also capable of calculating compositional evolution depending on the choice of petrologic melting model. Programmed in modules, MeltMigrator is highly customizable and can be expanded to a wide range of applications. We have applied it to complex mid-ocean ridge model settings, including transform faults, oblique segments, ridge migration, asymmetrical spreading, background mantle flow, and ridge-plume interaction. In this technical report, we include an example application to a segmented mid-ocean ridge. MeltMigrator is available as a supplement to this paper, and it is also available from GitHub and the University of Maryland Geodynamics Group website.National Science Foundation Grant Number: OCE-0937277 and OCE-14582012017-07-2

    A probabilistic damage model of stress-induced permeability anisotropy during cataclastic flow

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B10207, doi:10.1029/2006JB004456.A fundamental understanding of the effect of stress on permeability evolution is important for many fault mechanics and reservoir engineering problems. Recent laboratory measurements demonstrate that in the cataclastic flow regime, the stress-induced anisotropic reduction of permeability in porous rocks can be separated into 3 different stages. In the elastic regime (stage I), permeability and porosity reduction are solely controlled by the effective mean stress, with negligible permeability anisotropy. Stage II starts at the onset of shear-enhanced compaction, when a critical yield stress is attained. In stage II, the deviatoric stress exerts primary control over permeability and porosity evolution. The increase in deviatoric stress results in drastic permeability and porosity reduction and considerable permeability anisotropy. The transition from stage II to stage III takes place progressively during the development of pervasive cataclastic flow. In stage III, permeability and porosity reduction becomes gradual again, and permeability anisotropy diminishes. Microstructural observations on deformed samples using laser confocal microscopy reveal that stress-induced microcracking and pore collapse are the primary forms of damage during cataclastic flow. A probabilistic damage model is formulated to characterize the effects of stress on permeability and its anisotropy. In our model, the effects of both effective mean stress and differential stress on permeability evolution are calculated. By introducing stress sensitivity coefficients, we propose a first-order description of the dependence of permeability evolution on different loading paths. Built upon the micromechanisms of deformation in porous rocks, this unified model provides new insight into the coupling of stress and permeability.W.Z. was partially supported by the National Science Foundation under grants NSF-OCE0221436 and NSF-EAR 0510459, and the Department of Energy under grant #DEFGO200ER15058 (WHOI). LM was supported by the National Science Foundation under grant NSF-EAR0337678

    A disorder parameter for dual superconductivity in gauge theories

    Full text link
    Dual superconductivity in the confining phase of gauge theories is discussed in terms of a disorder parameter which vanishes in normal phase and is different from zero in the superconducting phase.Comment: 3 pages, 4 postscript figures, espcrc2, epsfig latex styles, Contribution to Lat 97 Conference, Edinburg

    Monopole Condensation and Color Confinement

    Full text link
    New evidence is discussed of monopole condensation in the vacuum of SU(2) and SU(3) gauge theories. Monopoles defined by different abelian projections do condense in the transition to the confined phase and show the same behavior. For SU(2) critical indices are determined by finite size scaling analysis and the results agree with the 3d Ising Model, as expected.Comment: LATTICE98(confinement),3 pages,4 figure

    Quantitative palynological analysis of the E2a and E2b goniatite biozones (Arnsbergian, Mississippian) in mudstones from the Southern Pennine Basin (U.K.)

    Get PDF
    We performed a quantitative palynological analysis of Arnsbergian (Namurian, Late Mississippian) mudstone intervals, potentially prospective for unconventional hydrocarbons. While many palynological studies exist on these stratigraphic intervals in the Widmerpool Gulf and the Edale Basin (sub-basins of the Pennine Basin), very few studies perform full statistical analyses. Using the Carsington Dam Reconstruction C3 (Carsington DRC3, Widmerpool Gulf) and the Karenight-1 (Edale Basin) boreholes, we show that the combination of quantitative palynological data and detrended correspondence analysis (DCA) can aid biozonation and additionally, provide paleoecological constraints to the Arnsbergian mudrocks. The studied interval in Carsington DRC3 was assigned to the TK miospore biozone and a hitherto undescribed peak in the fresh water alga Botryococcus was recorded. Using relative abundances of hinterland species, mainly from the genus Florinites, both boreholes could be correlated and a more confident assignment of the TK miospore biozone covering an interval containing goniatite biozone E2b in Karenight-1 was achieved. The techniques used in the current study should be especially valuable for assessing borehole materials where the recovery of macrofossils, like goniatites used as the main biostratigraphic tool in the Namurian, can be very low. Future studies should focus on the same stratigraphic interval from different sub-basins of the Pennine Basin to further assess the applicability of quantitative palynological analysis combined with DCA as a stratigraphic tool for potentially prospective mudstones

    The recent history of the Galapagos Triple Junction preserved on the Pacific plate

    Get PDF
    Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 371-372 (2013): 6-15, doi:10.1016/j.epsl.2013.04.018.At the Galapagos triple junction, the Cocos and Nazca plates are broken by a succession of transient rifts north and south of the Cocos-Nazca (C-N) Rift. Modeling has suggested that each rift initiated at the East Pacific Rise (EPR), its location controlled by the distance of the C-N Rift tip from the EPR. Evidence on the Pacific plate confirms that each transient rift formed a true RRR triple junction with the EPR and clarifies the history of the region. At ~1.5 Ma the triple junctions began jumping rapidly toward C-N Rift suggesting that the C-N Rift tip moved closer to the EPR. Pacific abyssal hills became broad and shallow indicating enhanced magma supply to the region. At ~1.4 Ma, the Galapagos microplate developed when extension became fixed on the southern transient rift to form the South scarp of the future Dietz rift basin. Lavas flooded the area and a Galapagos-Nazca magmatic spreading center initiated at the EPR. We suggest that a hotspot was approaching the southern triple junction from the west. The hotspot crossed to the Nazca plate ~1.25 Ma. Dietz seamount formed within the young spreading center, dikes intruded Dietz rift basin, and eruptions built volcanic ridges. Since ~0.8 Ma magmatic spreading has jumped northward twice, most recently to Dietz volcanic ridge. Amagmatic extension to the east has formed the large North scarp of Dietz rift basin. Northward jumping of the southern triple junction has maintained the microplate boundary close to the proposed hotspot.DKS was partially supported by NSF grant OCE-1028537, WZ by NSF grant EAR-1056317, and LM by NSF grant OCE-1060878

    COVID-19 Accelerated Cognitive Decline in Elderly Patients with Pre-Existing Dementia Followed up in an Outpatient Memory Care Facility

    Get PDF
    Introduction: Coronavirus disease 2019 (COVID-19) may affect the cognitive function and activities of daily living (ADL) of elderly patients. This study aimed to establish the COVID-19 effect on cognitive decline and the velocity of cognitive function and ADL changes in elderly patients with dementia followed up in an outpatient memory care facility. Methods: In total, 111 consecutive patients (age 82 ± 5 years, 32% males) with a baseline visit before infection were divided into those who had or did not have COVID-19. Cognitive decline was defined as a five-point loss of Mini-Mental State Examination (MMSE) score and ADL comprising basic and instrumental ADL indexes (BADL and IADL, respectively). COVID-19 effect on cognitive decline was weighted for confounding variables by the propensity score, whereas the effect on change in the MMSE score and ADL indexes was analyzed using multivariate mixed-effect linear regression. Results: COVID-19 occurred in 31 patients and a cognitive decline in 44. Cognitive decline was about three and a half times more frequent in patients who had COVID-19 (weighted hazard ratio 3.56, 95% confidence interval 1.50–8.59, p = 0.004). The MMSE score lowered on average by 1.7 points/year, independently of COVID-19, but it lowered twice faster in those who had COVID-19 (3.3 vs. 1.7 points/year, respectively, p < 0.050). BADL and IADL indexes lowered on average less than 1 point/year, independently of COVID-19 occurrence. Patients who had COVID-19 had a higher incidence of new institutionalization than those who did not have the disease (45% versus 20%, p = 0.016, respectively). Conclusions: COVID-19 had a significant impact on cognitive decline and accelerated MMSE reduction in elderly patients with dementia

    Old subjects with sepsis in the emergency department: Trend analysis of case fatality rate

    Get PDF
    Background: The burden of sepsis represents a global health care problem. We aimed to assess the case fatality rate (CFR) and its predictors in subjects with sepsis admitted to a general Italian hospital from 2009 to 2016, stratified by risk score. Methods: We performed a retrospective analysis of all sepsis-related hospitalizations after Emergency Department (ED) visit in a public Italian hospital in an 8-year period. A risk score to predict CFR was computed by logistic regression analysis of selected variables in a training set (2009-2012), and then confirmed in the whole study population. A trend analysis of CFR during the study period was performed dividing patient as high-risk (upper tertile of risk score) or low-risk. Results: Two thousand four hundred ninety-two subjects were included. Over time the incidental admission rate (no. of sepsis-related admissions per 100 total admissions) increased from 4.1% (2009-2010) to 5.4% (2015-2016); P &lt; 0.001, accompanied by a reduced CFR (from 38.0 to 18.4%; P &lt; 0.001). A group of 10 variables (admission to intensive care unit, cardio-vascular dysfunction, HIV infection, diabetes, age 65 80 years, respiratory diseases, number of organ dysfunction, digestive diseases, dementia and cancer) were selected by the logistic model to predict CFR with good accuracy: AUC 0.873 [0.009]. Along the years CFR decreased from 31.8% (2009-2010) to 25.0% (2015-2016); P = 0.007. The relative proportion of subjects 6580 years (overall, 52.9% of cases) and classified as high-risk did not change along the years. CFR decreased only in low-risk subjects (from 13.3 to 5.2%; P &lt; 0.001), and particularly in those aged 6580 (from 18.2 to 6.6%; P = 0.003), but not in high-risk individuals (from 69.9 to 64.2%; P = 0.713). Conclusion: Between 2009 and 2016 the incidence of sepsis-related hospitalization increased in a general Italian hospital, with a downward trend in CFR, only limited to low-risk patients and particularly to subjects 6580 years

    Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°–16°E

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B10102, doi:10.1029/2011JB008259.Crustal thickness variations at the ultraslow spreading 10–16°E region of the Southwest Indian Ridge are used to constrain melt migration processes. In the study area, ridge morphology correlates with the obliquity of the ridge axis with respect to the spreading direction. A long oblique “supersegment”, nearly devoid of magmatism, is flanked at either end by robust magmatic centers (Joseph Mayes Seamount and Narrowgate segment) of much lesser obliquity. Plate-driven mantle flow and temperature structure are calculated in 3-D based on the observed ridge segmentation. Melt extraction is assumed to occur in three steps: (1) vertical migration out of the melting region, (2) focusing along an inclined permeability barrier, and (3) extraction when the melt enters a region shallower than ∌35 km within 5 km of the ridge axis. No crust is predicted in our model along the oblique supersegment. The formation of Joseph Mayes Seamount is consistent with an on-axis melt anomaly induced by the local orthogonal spreading. The crustal thickness anomaly at Narrowgate results from melt extracted at a tectonic damage zone as it travels along the axis toward regions of lesser obliquity. Orthogonal spreading enhances the Narrowgate crustal thickness anomaly but is not necessary for it. The lack of a residual mantle Bouguer gravity high along the oblique supersegment can be explained by deep serpentization of the upper mantle permissible by the thermal structure of this ridge segment. Buoyancy-driven upwelling and/or mantle heterogeneities are not required to explain the extreme focusing of melt in the study area.This work was supported by grants OCE‐ 0623188 and OCE‐0937277 from the National Science Foundation
    • 

    corecore