41 research outputs found

    Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis

    Get PDF
    The late Miocene evolution of the Mediterranean Basin is characterized by major changes in connectivity, climate and tectonic activity resulting in unprecedented environmental and ecological disruptions. During the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma) this culminated in most scenarios first in the precipitation of gypsum around the Mediterranean margins (Stage 1, 5.97-5.60 Ma) and subsequently > 2 km of halite on the basin floor, which formed the so-called Mediterranean Salt Giant (Stage 2, 5.60-5.55 Ma). The final MSC Stage 3, however, was characterized by a "low-salinity crisis", when a second calcium-sulfate unit (Upper Gypsum; substage 3.1, 5.55-5.42 Ma) showing (bio)geochemical evidence of substantial brine dilution and brackish biota-bearing terrigenous sediments (substage 3.2 or Lago-Mare phase, 5.42-5.33 Ma) deposited in a Mediterranean that received relatively large amounts of riverine and Paratethys-derived low-salinity waters. The transition from hypersaline evaporitic (halite) to brackish facies implies a major change in the Mediterranean’s hydrological regime. However, even after nearly 50 years of research, causes and modalities are poorly understood and the original scientific debate between a largely isolated and (partly) desiccated Mediterranean or a fully connected and filled basin is still vibrant. Here we present a comprehensive overview that brings together (chrono)stratigraphic, sedimentological, paleontological, geochemical and seismic data from all over the Mediterranean. We summarize the paleoenvironmental, paleohydrological and paleoconnectivity scenarios that arose from this cross-disciplinary dataset and we discuss arguments in favour of and against each scenario

    Two-photon excitation STED microscopy.

    No full text

    STED with wavelengths closer to the emission maximum.

    No full text
    In stimulated emission depletion (STED) nanoscopy the wavelength of the STED beam is usually tuned towards the red tail of the emission maximum of the fluorophore. Shifting the STED wavelength closer to the emission peak, i.e. towards the blue region, favorably increases the stimulated emission cross-section. However, this blue-shifting also increases the probability to excite fluorophores that have remained in their ground state, compromising the image contrast. Here we present a method to exploit the higher STED efficiency of blue-shifted STED beams while maintaining the contrast in the image. The method is exemplified by imaging immunolabeled features in mammalian cells with an up to 3-fold increased STED efficiency compared to that encountered in standard STED nanoscopy implementations

    STED with wavelengths closer to the emission maximum.

    No full text
    In stimulated emission depletion (STED) nanoscopy the wavelength of the STED beam is usually tuned towards the red tail of the emission maximum of the fluorophore. Shifting the STED wavelength closer to the emission peak, i.e. towards the blue region, favorably increases the stimulated emission cross-section. However, this blue-shifting also increases the probability to excite fluorophores that have remained in their ground state, compromising the image contrast. Here we present a method to exploit the higher STED efficiency of blue-shifted STED beams while maintaining the contrast in the image. The method is exemplified by imaging immunolabeled features in mammalian cells with an up to 3-fold increased STED efficiency compared to that encountered in standard STED nanoscopy implementations

    STED nanoscopy with time-gated detection: theoretical and experimental aspects

    Get PDF
    In a stimulated emission depletion (STED) microscope the region in which fluorescence markers can emit spontaneously shrinks with continued STED beam action after a singular excitation event. This fact has been recently used to substantially improve the effective spatial resolution in STED nanoscopy using time-gated detection, pulsed excitation and continuous wave (CW) STED beams. We present a theoretical framework and experimental data that characterize the time evolution of the effective point-spread-function of a STED microscope and illustrate the physical basis, the benefits, and the limitations of time-gated detection both for CW and pulsed STED lasers. While gating hardly improves the effective resolution in the all-pulsed modality, in the CW-STED modality gating strongly suppresses low spatial frequencies in the image. Gated CW-STED nanoscopy is in essence limited (only) by the reduction of the signal that is associated with gating. Time-gated detection also reduces/suppresses the influence of local variations of the fluorescence lifetime on STED microscopy resolution

    Sharper low-power STED nanoscopy by time gating.

    Get PDF
    Applying pulsed excitation together with time-gated detection improves the fluorescence on-off contrast in continuous-wave stimulated emission depletion (CW-STED) microscopy, thus revealing finer details in fixed and living cells using moderate light intensities. This method also enables super-resolution fluorescence correlation spectroscopy with CW-STED beams, as demonstrated by quantifying the dynamics of labeled lipid molecules in the plasma membrane of living cells
    corecore