378 research outputs found

    AC Stark-shift in CPT-based Cs miniature atomic clocks

    Get PDF
    We report on studies on the light-shift in caesium miniature atomic clocks based on coherent population trapping (CPT) using a micro-fabricated buffer-gas cell (MEMS cell). The CPT signal is observed on the Cs D1-line by coupling the two hyperfine ground-state Zeeman sublevels involved in the clock transition to a common excited state, using two coherent electromagnetic fields. These light fields are created with a distributed feedback laser and an electro-optical modulator. We study the light-shift phenomena at different cell temperatures and laser wavelengths around 894.6nm. By adjusting the cell temperature, conditions are identified where a miniature CPT atomic clock can be operated with simultaneously low temperature coefficient and suppressed light-shift. The impact of the light-shift on the clock frequency stability is evaluated. These results are relevant for improving the long-term frequency stability of CPT-based Cs vapour-cell clock

    Tailoring colors by O-annulation of polycyclic aromatic hydrocarbons

    Get PDF
    The synthesis of O-doped polyaromatic hydrocarbons, in which two polycyclic aromatic hydrocarbon subunits are bridged through one or two O atoms, has been achieved. This includes high-yielding ring-closure key steps that, depending on the reaction conditions, yield the formation of either furanyl or pyranopyranyl linkages through intramolecular C-O bond formation. Comprehensive photophysical measurements in solution showed that these molecules feature exceptionally high emission yields and tunable absorption properties throughout the UV-vis spectral region. Electrochemical investigations showed that in all cases the O-annulation increases the electron donor capabilities by raising the HOMO energy level with the LUMO energy level being less affected. Moreover, third-order NLO measurements of solutions or thin films containing the dyes displayed very good second hyperpolarizibility values. Importantly, PMMA films containing the pyranopyranyl derivatives displayed weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, revealing to be exceptional organic materials for photonic devices

    Exercise-Based Cardiac Rehabilitation in Twelve European Countries Results of the European Cardiac Rehabilitation Registry

    Get PDF
    AIM: Results from EuroCaReD study should serve as a benchmark to improve guideline adherence and treatment quality of cardiac rehabilitation (CR) in Europe. METHODS AND RESULTS: Data from 2.054 CR patients in 12 European countries were derived from 69 centres. 76% were male. Indication for CR differed between countries being predominantly ACS in Switzerland (79%), Portugal (62%) and Germany (61%), elective PCI in Greece (37%), Austria (36%) and Spain (32%), and CABG in Croatia and Russia (36%). A minority of patients presented with chronic heart failure (4%). At CR start, most patients already were under medication according to current guidelines for the treatment of CV risk factors. A wide range of CR programme designs was found (duration 3 to 24weeks; total number of sessions 30 to 196). Patient programme adherence after admission was high (85%). With reservations that eCRF follow-up data exchange remained incomplete, patient CV risk profiles experienced only small improvements. CR success as defined by an increase of exercise capacity >25W was significantly higher in young patients and those who were employed. Results differed by countries. After CR only 9% of patients were admitted to a structured post-CR programme. CONCLUSIONS: Clinical characteristics of CR patients, indications and programmes in Europe are different. Guideline adherence is poor. Thus, patient selection and CR programme designs should become more evidence-based. Routine eCRF documentation of CR results throughout European countries was not sufficient in its first application because of incomplete data exchange. Therefore better adherence of CR centres to minimal routine clinical standards is requested

    A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Full text link
    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.Comment: Revised author affiliations, corrected typos, made minor improvements to text, and revised reference

    Search for extraterrestrial antineutrino sources with the KamLAND detector

    Get PDF
    We present the results of a search for extraterrestrial electron antineutrinos (νˉe\bar{\nu}_{e}'s) in the energy range 8.3MeV<Eνˉe<31.8MeV8.3 MeV < E_{\bar{\nu}_{e}} < 31.8 MeV using the KamLAND detector. In an exposure of 4.53 kton-year, we identify 25 candidate events. All of the candidate events can be attributed to background, most importantly neutral current atmospheric neutrino interactions, setting an upper limit on the probability of 8^{8}B solar νe\nu_{e}'s converting into νˉe\bar{\nu}_{e}'s at 5.3×1055.3 \times 10^{-5} (90% C.L.), if we assume an undistorted νˉe\bar{\nu}_{e} shape. This limit corresponds to a solar νˉe\bar{\nu}_{e} flux of 93cm2s193 cm^{-2} s^{-1} or an event rate of 1.6events(ktonyear)11.6 events (kton-year)^{-1} above the energy threshold (Eνˉe>8.3MeV)(E_{\bar{\nu}_{e}} > 8.3 MeV). The present data also allows us to set more stringent limits on the diffuse supernova neutrino flux and on the annihilation rates for light dark matter particles.Comment: 22 pages, 6 figure

    Measurement of the 8B Solar Neutrino Flux with the KamLAND Liquid Scintillator Detector

    Get PDF
    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.Comment: 6 pages, 3 figure
    corecore