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Abstract
The subthalamic nucleus (STN) is successfully used as a surgical target for deep brain stimulation in the treatment of move-
ment disorders. Interestingly, the internal structure of the STN is still incompletely understood. The objective of the present 
study was to investigate three-dimensional (3D) immunoreactivity patterns for 12 individual protein markers for GABA-ergic, 
serotonergic, dopaminergic as well as glutamatergic signaling. We analyzed the immunoreactivity using optical densities 
and created a 3D reconstruction of seven postmortem human STNs. Quantitative modeling of the reconstructed 3D immu-
noreactivity patterns revealed that the applied protein markers show a gradient distribution in the STN. These gradients 
were predominantly organized along the ventromedial to dorsolateral axis of the STN. The results are of particular interest 
in view of the theoretical underpinning for surgical targeting, which is based on a tripartite distribution of cognitive, limbic 
and motor function in the STN.

Keywords Subthalamic nucleus · Immunocytochemistry · Neuroanatomy · Basal ganglia

Introduction

Among the over 450 subcortical structures of the human 
brain is the subthalamic nucleus (STN), which is involved in 
many functions, ranging from speeded decision-making to 
emotional regulation (Frank 2006; Herculano-Houzel 2012; 
Alkemade 2013; Péron et al. 2013; Aron et al. 2016; Forst-
mann et al. 2017), the STN is of particular interest as a target 
for deep brain stimulation (DBS) to alleviate symptoms in a 
variety of movement disorders including Parkinson’s disease 
(PD) (Temel et al. 2005).

The internal structure of the human STN is a topic of 
ongoing discussion and consistency between empirical stud-
ies is limited (Keuken et al. 2012; Alkemade et al. 2015). A 
prominent model of the internal structure of the STN in the 
scientific literature is the tripartite model, which divides the 
STN in a limbic medial tip, a ventromedial cognitive area, 
and a dorsolateral motor area (Temel et al. 2005). The level 
of anatomical separation between the subdivisions of the 
STN is unknown, and findings vary based on the applied 
research technique (Alkemade and Forstmann 2014; Lam-
bert et al. 2015). The principle of functional segregation 
offers a theoretical framework for defining subdivisions in 
the STN at the cellular level. According to this principle, 
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neuronal cell types move apart during development, depend-
ing on the specializations they acquire (Arendt 2008). Dur-
ing this process, they form distinct neuronal populations, 
with potentially distinct functions, as reflected by their 
individual molecular fingerprint. Immunocytochemical 
approaches in postmortem tissues allow the identification 
of neuronal subpopulations, and thereby potentially subdivi-
sions within the STN (Forstmann et al. 2017).

The availability of detailed information on the immuno-
cytochemical characteristics of the human STN is gener-
ally of high quality, but only a small number of detailed 
studies on serotonin (5HT), and its transporter (SERT), and 
on PARV and CALR expression report on a topographi-
cal organization within the STN (Mori et al. 1985; Parent 
et al. 1996, 2011; Augood et al. 1999). Additionally, studies 
on the human and nonhuman primate STN have revealed 
the expression of glutamatergic, GABA-ergic, dopaminer-
gic, serotonergic as well as endogenous opioid markers, in 
addition to calcium-binding proteins (Kultas-Ilinsky et al. 
1998; Augood et al. 1999, 2000; Hedreen 1999; Charara 
et al. 2000; Kuwajima et al. 2004; Levesque and Parent 
2005; Aron and Poldrack 2006; Isoda and Hikosaka 2008). 
A number of the immunocytochemical studies available do 
not report specifically on distribution patterns within the 
human STN (Nauta and Cole 1978; Mori et al. 1985; Kultas-
Ilinsky et al. 1998; Augood et al. 1999, 2000; Hedreen 1999; 
Charara et al. 2000; Hurd et al. 2001; Kuwajima et al. 2004; 
Levesque and Parent 2005; Aubert et al. 2007; Parent et al. 
2011), and classical immunocytochemical studies generally 

are descriptive in nature. Here we set out to investigate the 
three-dimensional (3D) functional microscopic neuroanat-
omy of the human STN in a systematic manner, and allow-
ing quantitative stereological analyses of the data. We have 
created 3D reconstructions of immunocytochemical staining 
patterns for quantitative comparisons, which allows us to 
assess the internal structure of the STN at the cellular level. 
Our results show a clear anatomical organization within the 
STN, and consistency across subjects. Our findings indicate 
that there are reoccurring patterns in the distribution of the 
individual immunocytochemical markers.

Results

We obtained ten formalin-fixed tissue blocks containing the 
left STN from clinically non-demented donors via the Neth-
erlands Brain Bank (www.brain bank.nl). Right STNs were 
used for neuropathological assessments and were, therefore, 
not available for our research. Clinicopathological data are 
presented in Table 1.

Twelve primary antibodies were used for immunocyto-
chemical studies of the STN. Antibody selection was based 
on the ability to label general cell features or major neuro-
transmitter systems, and reports on their expression in the 
STN (see “Methods”). Consecutive sections containing the 
STN were stained for (1) Neurofilament H (SMI-32), which 
showed clear labeling of the neuronal cell bodies. Addition-
ally, weak fiber staining was present, and occasionally, long 

Table 1  Clinicopathological data

AD Alzheimer’s disease, Fix fixation duration, Nd not determined, PTCA  percutaneous transluminal coronary angioplasty, PMD postmortem 
delay, TIA transient ischemic attack, y years
a Determined postmortem

NBB# Age (y) Sex PMD (h:m) Fix (days) Cause of death, clinical diagnosis

12-062 88 M 05:40 Nd Ischemic bowel rupture, aortic stenosis, femoropopliteal bypass, hypercholesterolemia, cardio-
renal syndrome, ischemic cardiomyopathy, atrial fibrillation,  tauopathya

12-082 101 F 05:10 Nd Cachexia, cataract, TIA, mitral valve insufficiency, osteoporosis, coxarthrosis, kyphosis, decu-
bitus, dehydration, AD Braak score  4Ca

12-104 79 M 06:30 Nd Respiratory insufficiency, type 2 diabetes, nephropathy
13-095 101 F 06:15 57 Pneumonia, cardiac failure, angina pectoris, cataract, hysterectomy, cholecystectomy, type 2 

diabetes, coxarthrosis, spondylosis, conjunctivitis, COPD, bullous pemphigoid
14-037 101 F 07:27 57 Renal insufficiency, urinary tract infection, gastroenteritis, scoliosis, atrial fibrillation, cataract, 

prosthetic hip, AD Braak score  4Ca

14-051 92 M 07:45 57 Cardiac failure, type 2 diabetes, polyneuropathy, decubitus, ascites, liver cirrhosis, cataract, 
COPD, prosthetic hips

14-069 73 M 04:25 56 Pneumonia, COPD, hypercholesterolemia, atrial fibrillation, aortofemoral bypass, PCTA, cata-
ract, spondylosis, esophagitis, prostate carcinoma, hyperthyroidism, decubitus

15-033 93 M 07:40 59 Cardiac failure, aortic stenosis, cardiac decompensation, macular degeneration, basal cell 
carcinoma

15-035 73 M 08:00 56 Pneumonia, cardiac failure, pneumonia, myelodysplastic syndrome, fungal infection
15-055 72 F 06:50 55 Respiratory insufficiency, polymyalgia, polio, ovarium carcinoma, ileus, osteoporosis

http://www.brainbank.nl


3215Brain Structure and Function (2019) 224:3213–3227 

1 3

thin fibers were stained in the dorsolateral part of the STN; 
(2) synaptophysin (SYN), which showed punctate staining 
scattered throughout the nucleus, as well as neuronal somata 
surrounded by puncta. Additionally, the punctate staining 
extended beyond the dorsolateral tip of the nucleus in the 
shape of a cap. (3) Myelin basic protein (MBP) revealed 
clear labeling of myelin sheaths throughout the nucleus, 
(4) tyrosine hydroxylase (TH), which was observed in 
thick long, and thin punctate fibers. (5) Vesicular glutamate 
transporter 1 (VGLUT1) showed punctate fiber labeling. 
Increased density was present at the borders of the nucleus. 
(6) Glutamate decarboxylase 65/67 (GAD65/67) showed 
moderate fiber terminal staining; positive neurons were 
observed only occasionally. Additionally, presynaptic bou-
tons were observed extending beyond the dorsolateral border 
of the STN, appearing as a cap on the dorsolateral tip of the 
nucleus. (7) GABA-A receptor subunit alpha 3 (GABRA3) 
showed predominant neuronal staining, in addition to punc-
tate fiber staining. (8) Serotonin transporter (SERT), showed 
clear fiber labeling. (9) Parvalbumin (PARV) revealed clear 
labeling of cell bodies, as well as diffuse labeling of fibers; 
(10) calretinin (CALR) labeled both cell bodies and fibers. 
(11) Transferrin (TF) labeling was present in oligodendro-
cytes, as well as numerous blood vessels. The oligoden-
drocytes displayed a clear rounded shape and cytoplasmic 
staining. Positive neurons were detected frequently while 
few fibers were also present. Transferrin staining showed 
substantial background staining, which fits with transferrin 
labeling in the extracellular matrix. (12) Ferritin (FERR) 
staining revealed numerous positive oligodendrocytes, as 
well as weaker punctate staining. For illustrations, see Fig. 1 
and supplementary material 1.

The antibodies include markers for the principal excitatory 
glutamatergic system, the principle inhibitory GABA-ergic 
system as well as other major neurotransmitter systems such 
as dopamine and serotonin. A more extensive overview of the 
characteristics of the antibodies is presented in “Methods”. 
Immunoreactivity was visually inspected and present for all 
proteins in all tested tissue specimens, and staining intensity 
showed substantial interindividual variation, which is in line 
with previous publications (Alkemade et al. 2012; Borgers 
et al. 2014). Digital images were created and shape informa-
tion was used to perform linear transformations for registration 
to the corresponding block face images. Additionally, manual 
outlines of the STN were created by two independent raters on 
PARV and SMI32 sections to define the location and outline of 
each individual STN. These STN outlines and the thresholded 
staining results allowed the reconstruction of 3D densitomet-
ric data (arbitrary units) into block face space in seven tissue 
specimens as illustrated in Fig. 2. For three other blocks, 3D 
reconstructions were not further analyzed, due to poor quality 
as a result of distortions and tissue damage. Visual inspection 
showed protein marker expression throughout the entire STN, 

for each marker, with clear local intensity differences for each 
marker.

To investigate the consistency of the immunoreactivity 
patterns across specimens, each individual 3D reconstruc-
tion of an individual staining pattern was rasterized into 
3 × 3 × 3=27 sectors of equal volume along the rostrocaudal 
axis, and the dorsolateral–ventromedial, and its orthogonal 
axis. For each sector and protein marker, the mean staining 
intensity was tested against the mean of the sectors. For 10 
out of 12 markers, a consistent inhomogeneous immunore-
activity pattern was identified in one or more sector using 
one-sample t tests, thresholded at a false discovery rate of 
q < 0.05.

We subsequently investigated the immunoreactivity 
patterns in more detail, and tested whether they were best 
described using a gradient model or using a tripartite model. 
We rasterized the STN in 1000 voxels in the dimensions 
identified with the PCA analysis described above (10 voxels 
in each direction). We then fit four generalized linear mod-
els (GLMs) with negative binomially distributed errors for 
each specimen and protein marker. These GLMs describe the 
expression in each voxel as a function of location in space 
along the PCA dimensions. Model A assumes no change 
across space (homogenous immunoreactivity):

in which y is the observed immunoreactivity, �0 an intercept, 
and α the gamma distribution parameter that is assumed to 
underlie the rate distribution of a Poisson process. Model B 
assumes that the change in expression is linear across space:

where x1–x3 are the voxels’ location along the rostrocau-
dal, the dorsomedial–ventrolateral, and its orthogonal axes, 
respectively, and �1−3 the corresponding weights. Model C 
assumes three subdivisions separated by abrupt boundaries:

where each voxel location is projected onto a new axis p, 
which defines the axis along which the borders �1−2 are 

[EQ1]y = exp{�0} + �, � ∼ negative binomial(�)

y = exp
{
�0 + �1x1 + �2x2 + �3x3

}
+ �,

� ∼ negative binomial(�)

��
2
=
(
1 − �1

)
,

��
3
=
(
1 − �1 − ��

2

)
,

p = �1x1 + ��
2
x2 + ��

3
x3,

d1

�
1 if p < 𝜏1 ∗ ‖p‖
0 otherwise,

,

d2

�
1 if p > 𝜏2 ∗ ‖p‖
0 otherwise,

,

y = exp
{
�0 + �1d1 + �2d2

}
+ �, � ∼ negative binomial(�),
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located. Finally, Model D assumes a gradient of non-linear 
changes:

such that changes across space are described by a sigmoidal 
function with smoothness parameter � . Variables used are y 
= stain intensity, x1, 2, 3 = voxel locations along the three 
axes, p = projection axis, ||p|| = length of projection axis, 
d1/d2 = dummy variables.

The Bayesian Information Criterion (Schwarz 1978; 
Wagenmakers and Farrell 2004) was used to compare 
the quality of fit of the four GLMs. The BIC provides a 
measure of the quality of model fit penalized for model 
complexity to provide a quantification of parsimony. The 
results of the model comparison are shown in Table 2. 
Model B (linear gradient) provided the best fit in 61.9% 
of the specimen/protein marker combinations, and is 
the overall preferred model as evidenced by the highest 
mean weighted BIC. Non-linear gradient Model D was 
preferred in 29.76% of the cases, and the tripartite model 
provides the best description of the data for the remain-
ing 8.33% of the specimen/protein marker combinations 
(Table 2).

Figure 3 illustrates the overall quality of the fit of 
Model B. For each specimen, individual immunoreactiv-
ity data and model predictions were normalized to mean 
0 and standard deviation 1. Model B, which described a 
linear gradient, was able to capture the global patterns in 
expression across space best for protein markers CALR, 
GABRA3, GAD6567, SERT, SMI32, SYN, TH, and 
VGLUT1. MBP, FER, PARV, and TRANSF show less 
consistency across specimens and/or highly non-linear 
patterns across space (e.g., local spheres of expression, 
c.f. PARV).

��
2
=
(
1 − �1

)
,

��
3
=
(
1 − �1 − ��

2

)
,

p = �1x1 + ��
2
x2 + ��

3
x3,

y = exp

�
�0 +

�1

1 + exp
�
−�

��
�1 ∗ ‖p‖

�
− p

�� +
�2

1 + exp
�
−�

��
�2 ∗ ‖p‖

�
) − p

��

�

+ �, � ∼ negative binomial(�),

Discussion

In the present study, we provide spatial detail and 3D infor-
mation that allow us to move beyond descriptive accounts 
of the anatomy of the human STN. The results confirm that 
the STN is not a homogenous nucleus, nor does the organi-
zation of the STN support of the existence of subdivisions 
as defined by clustered neuronal populations with limited 
border zones.

An inherent limitation of postmortem studies is a bias 
towards old age, as well as strong variation in antemortem 
disease and cause of death. Since we collected the tissue 
from clinically non-demented controls in a prospective fash-
ion, we did not select donors with comparable disease state, 

as described previously (Alkemade et al. 2003, 2005b). By 
chance, we included three female centenarians in our stud-
ies. In view of these limitations, we cannot draw any mean-
ingful conclusions on potential effects of factors such as age, 
sex or disease state. We would like to stress that immunore-
activity is determined by protein expression, as well as the 
staining procedure. Therefore, no meaningful conclusions 
can be drawn from comparisons across antibodies within 
the current studies or from comparisons to reports on the 
abundance of immunoreactivity across species in literature. 
All comparisons described here are, therefore, performed 
exclusively within and not across the individual markers. 
Our data are in agreement with earlier results on the human 
and nonhuman primate STN (Nauta and Cole 1978; Mori 
et al. 1985; Kultas-Ilinsky et al. 1998; Augood et al. 1999, 
2000; Hedreen 1999; Charara et al. 2000; Hurd et al. 2001; 
Kuwajima et al. 2004; Levesque and Parent 2005; Aubert 
et al. 2007; Parent et al. 2011), and allow us to speculate 
further on the existence of functional subdivisions in the 
STN. Distinct PARV and CALR distributions suggest local 
differences in intracellular calcium dynamics in the STN, 
and highest immunoreactivity indicative of GABA-ergic 
signaling was located in the ventromedial part of the ante-
rior half of the nucleus. This did not coincide with the most 
intense glutamatergic immunoreactivity, which was located 
in the dorsocaudal extent of the STN. It is important to note 
that both markers for GABA- and glutamatergic signaling 
were expressed throughout the STN. The variability in inten-
sity distributions between the 12 individual markers points 
towards a complex STN organization, indicating that the 
tripartite hypothesis of the STN represents an oversimplifi-
cation of its internal structure.

Fig. 1  Example of immunoreactivity in specimen #14-051 for sero-
tonin transporter (SERT), calretinin (CALR), parvalbumin (PARV), 
tyrosine hydroxylase (TH), synaptophysin (SYN), transferrin (TF), 
glutamic acid decarboxylase (GAD65/67), neurofilament H (SMI32), 
ferritin (FERR), GABA receptor subunit A3 (GABRA3), vesicular 
glutamate transporter 1 (VGLUT1), myelin basic protein (MBP)

◂
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Our statistical modeling reveals consistent gradients in 
the immunoreactivity patterns throughout the human STN. 
Interpreting these findings within the framework of func-
tional segregation, the spatial segregation of individual cell 
populations within the STN during development appears to 
occur only to some extent at best, resulting in incomplete 
functional segregation within the STN. Small nonhuman pri-
mate studies show that neurons located in the dorsolateral 
part of the STN are connected to the globus pallidus externa, 
whereas neurons connected to the globus pallidus interna, 
substantia nigra pars reticulata, and caudate nucleus are 
large, although not exclusively confined to the ventromedial 
parts of the STN (Nauta and Cole 1978; Smith et al. 1990). 
In addition, neurons projecting to the ventral globus pallidus 
are located in the medial STN (Nauta and Cole 1978; Smith 
et al. 1990). Thorough tracing studies in nonhuman primates 
have revealed a clear topological organization of connectiv-
ity in the STN, but tracing techniques inherently lead to an 

underestimation of the quantity and distribution of projec-
tions in the STN (Alkemade 2013; Haynes and Haber 2013).

In vivo imaging studies, as well as clinical observations, 
provide some support for zonation within the STN [see (Alke-
made et al. 2015) for review], although caution should be 
applied when interpreting these data, since the limited ana-
tomical detail does not allow reliable assessment of the level 
of anatomical segregation between potential functional sub-
divisions. Here, we have studied that the internal structure of 
the STN within the framework of functional segregation, and 
the complex neuroanatomical structure, including the strong 
overlap of the distribution patterns of the immunocytochemi-
cal markers indicates that there is little evidence for anatomical 
segregation. We, therefore, conclude that the distribution of 
immunoreactivity as described here do not align with proposed 
functional subdivisions (Keuken et al. 2012; Alkemade and 
Forstmann 2014), and is in support of limited local function 
specialization. It is difficult to predict the importance of the 

Fig. 2  Example of a single STN (#15-033). Immunoreactivity is pre-
sented as maximum intensity Z-stacks, as well as consecutive sec-
tions for serotonin transporter (SERT), calretinin (CALR), parval-
bumin (PARV), tyrosine hydroxylase (TH), synaptophysin (SYN), 
transferrin (TF), glutamic acid decarboxylase (GAD65/67), neuro-

filament H (SMI32), ferritin (FERR), GABA receptor subunit A3 
(GABRA3), vesicular glutamate transporter 1 (VGLUT1), myelin 
basic protein (MBP). Note that the panels reflect immunoreactivity, 
not protein copies. Therefore, differences across markers cannot be 
interpreted as differences in protein expression levels

Table 2  Preferred model specimens and protein marker defined as the model with the lowest BIC

Model A represents homogenous immunoreactivity across the nucleus; Model B represents a linear gradient model; Model C assumes three sub-
divisions; Model D assumes a gradient of non-linear changes

NBB# CALR FER GABRA3 GAD6567 MBP PARV SERT SMI32 SYN TH TRANSF VGLUT1 Overall

13-095 B B D B D D C B D B D B B
14-037 B B B B B B B B D D B D B
14-051 B D B B D D B B D B D B B
14-069 B B B B D B B C C C C D B
15-033 B B B B B B B B B B B B B
15-035 B C D B B D B D B B B C B
15-055 B B D B D D B D D D B D D
Across specimens B B B B D D B B D B B B B
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observed topographical variations for the mechanism underly-
ing DBS. STN electrodes inserted to treat a number of motor 
disorders are aimed at the dorsolateral part of the STN (Green-
house et al. 2013). In line with the results of Haynes and Haber 
(Haynes and Haber 2013), who showed significant overlap 
in projection patterns within the primate STN, we found that 
none of the tested markers was confined to the dorsolateral 
STN, and we found no evidence for anatomical borders with 
clear subdivisions.

Methods

Tissue processing

All brain tissues were collected within a 4-year period 
with a < 8-h postmortem interval before brain autopsy. 
Tissues were obtained in accordance with BrainNet 
Europe’s Code of Conduct for brain banking (Klioueva 

Fig. 3  Quality of fit for Model B (linear gradient) over the rostrocau-
dal axis of the STN. Top panels show the data, and bottom panels 
show the model. Colors represent overall mean normalized intensity 
for the data, and the model. Relative changes in immunoreactivity are 

indicated in colors, ranging from relatively low (blue) to high (red) 
expression levels. Note that protein marker expression was present 
throughout the entire STN, for each marker, with clear local intensity 
differences within markers
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et al. 2015). Dissection of the STN was performed at the 
time of autopsy, and all tissue specimens were subjected 
to the same tissue processing procedure. Tissue blocks 
were dehydrated and paraffin embedded. Block face imag-
ing was performed while cutting serial coronal sections 
(6 µm) and images were realigned for reconstruction pur-
poses. Sections were systematically sampled with 300-µm 
intervals, stained, and digitally imaged to produce a 3D 
reconstruction of the staining profiles in block face space.

Tissue was fixated for approximately 8 weeks in 10% 
formalin (10× V/V). After initial formalin fixation, tis-
sues were transferred to phosphate-buffered saline [PBS 
(pH ~ 6.6–7.0): 145 mM NaCl, 9 mM disodium phosphate 
 (Na2HPO4 cat. no. 71640, Sigma-Aldrich, St. Louis, MO, 
USA), 2 mM sodium phosphate  (NaH2PO4·H2O, cat. no. 
S9638, Sigma-Aldrich, St. Louis, MO, USA)] containing 
0.02% sodium azide to prevent fungal growth until further 
processing. Following dehydration, tissues were embedded 
in paraffin, after which 6-µm-thick serial coronal sections 
were cut covering the rostrocaudal axis of the STN. While 
processing, block face imaging was performed (at an interval 
of 50 sections), which provides an intermediate step cru-
cial for 3D reconstructions. This was done using a camera 
mounted in front of the tissue blocks.

At the block face imaging level, sections were mounted 
on Menzel-Gläser Superfrost plus object slides (Cat. no. 
J1800AMNZ, Thermo Scientific, Braunschweig, Ger-
many) and stained with thionine (Thionine acetate: cat. no. 
1.15929.0025, Merck, Darmstadt, Germany) for anatomi-
cal orientation. Sections were stained at 300-µm intervals, 
which allowed us to identify the borders of the STN using 
a light microscope. At each level, consecutive sections 
containing the STN were mounted for immunocytochemi-
cal staining of neurofilament H (SMI-32), synaptophysin 
(SYN), tyrosine hydroxylase (TH), vesicular glutamate 
transporter 1 (VGLUT1), glutamate decarboxylase 65/67 
(GAD65/67), GABA-A receptor subunit alpha 3 (GABRA3), 
serotonin transporter (SERT), parvalbumin (PARV), cal-
retinin (CALR), transferrin (TRANSF), and ferritin (FERR) 
(see Table 3).

Each section was stained using a single antibody. In short, 
paraffin was cleared from the slides using xylene and tis-
sues were rehydrated using a graded series of alcohols. After 
rinsing in distilled water, antigen retrieval was performed 
using heat treatment (Shi et al. 1997), and pre-incubation 
was performed if appropriate. Subsequent incubation in the 
primary antibody was performed overnight in a humidified 
chamber in Supermix [(SUMI): TBS containing 0.25% gel-
atin (cat. no. 1.04078.1000, Merck, Darmstadt, Germany) 
and 0.5% Triton X-100 (cat.no. X100, Sigma-Aldrich, St. 
Louis, MO, USA)]. After rinsing in Tris-buffered saline 
[(TBS): 150  mM NaCl (cat. no. 1.06404.1000, Merck, 
Darmstadt, Germany), 50 mM Tris–HCl, pH 7.6 (Trizma 

cat. no. T1503, Sigma-Aldrich, St. Louis, MO, USA)], sec-
tions were incubated in an appropriate biotinylated second-
ary antibody (Vector laboratories Inc., Burlingame, CA, 
USA), followed by incubation in avidin-biotinylated com-
plex (VECTASTAIN ABC Kit: cat. no. PK-6100, Vector 
laboratories Inc., Burlingame, CA, USA) and visualization 
of the staining using diaminobenzidine amplified with nickel 
ammonium sulphate [DAB: cat. no. D5637, Sigma-Aldrich, 
St. Louis, MO, USA; Ammonium nickel (II) sulfate: BDH 
Chemicals, UK] as a chromogen resulting in an intense 
purple precipitate as described previously (Alkemade et al. 
2005a, c, 2012; Borgers et al. 2013). Sections were cover 
slipped using Entellan (Cat. no. 1.0791.0500, Merck, Darm-
stadt, Germany).

Image processing

Block face images were restacked using image J (1.48 V), 
Stackreg (Thévenaz et al. 1998). Tissue borders were manu-
ally outlined in the block face image since the more caudal 
tissue was visible in the paraffin resulting in limited contrast 
that did not allow reliable automatic parcellation of the tis-
sue in the field of view.

All stained sections were digitally imaged using a slide 
scanner (Ventana iScan HT, Roche). The appropriate image 
was selected and extracted from the BigTiff format, and 
the image was adjusted to allow registration of the pro-
tein markers to the appropriate block face images. Image 
conversion was performed to exclude contrast in the tis-
sue and to allow registration based on shape of the tissue. 
This was done because the contrast information obtained 
from the block face image was substantially different from 
that obtained from staining. Images were registered using 
a scaled rotation, followed by an affine transformation. 
Transformation matrices were saved. All transformations 
were visually inspected, and if the results were unsatisfac-
tory, as evidenced by clear jumps of the sections within the 
reconstructed STN structure, images were registered using a 
rigid body transformation followed by an affine registration. 
If registration results were still deemed to be insufficient, 
images were discarded. As a result, overall registration of 
#12-062, 12-082, and 12-104 was judged insufficient, and 
these specimens were excluded from further analyses.

Thresholding of the staining

A histogram-based thresholding procedure was applied to 
remove background signal from the immunocytochemis-
try procedure on the red channel of the stained images in 
ImageJ, by creating a RGB-stack, followed by the default 
thresholding procedure implemented in ImageJ, similar to 
previous reports (Alkemade et al. 2012; Borgers et al. 2013; 
Ten Kulve et al. 2016). Threshold settings were determined 
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experimentally [CALR (0, 95), FER (0, 127), GABRA (0, 
134), GAD6567 (51, 112), MBP (0, 130), PARV (41, 133), 
SERT (0, 165), SMI (0, 156), SYN (0, 162), TRANSF (0, 
110), TH (0, 155), VGLUT1 (0, 140)]. The thresholded 
images were converted using the binary mask functions to 
which subsequently the scaled rotation and affine transfor-
mation matrices, and, if appropriate, the rigid body and aff-
ine transformation matrices were applied (see Fig. 2 for an 
example). Two independent raters delineated the STN over 
the entire rostrocaudal axis of the STN using PARV and 
SMI32 images. The area included in the STN in a minimum 
of three masks was used for further analyses.

Quantitative analyses of immunoreactivity

Immunocytochemical were brought to individual block face 
space for each specimen. These images had a resolution of 
0.014 mm isotropic in the cutting plane, and 0.3 mm between 
adjacent slices. For the immunocytochemical images, the 
thresholded and transformed images constructed using 
imageJ were analyzed. These images were smoothed with a 
Gaussian kernel with a full-width half maximum (FWHM) 
of 0.3 mm (Szeliski 2010; de Hollander et al. 2014). This 
smoothing procedure was performed to (1) increase signal-
to-noise ratio and (2) focus the analyses on topological 
patterns in the order of 0.1–1 mm, rather than patterns in 
structures much smaller than the STN. To ensure that image 
intensities outside the STN mask were not included in the 
analyses, the smoothing kernel was truncated outside the 
STN mask and normalized.

Consistency of immunoreactivity patterns

To analyze the data of seven different STN specimens in 
a common space, they were rasterized in 27 sectors. Sec-
tors were created by defining and dividing three axes in the 
STN into three equal parts. The first axis was defined by the 
rostrocaudal cutting plane. The two other axes were defined 
by a principal component analysis (Bishop 2006) on the 2D 
coordinates over all slices. The resulting axes were visually 
inspected and were consistently identified as a main dorso-
lateral → ventromedial axis and a mediodorsal → ventro-
medial axis.

For each individual specimen, sectors were subjected to 
PCA analyses to test whether specific sectors showed altered 
immunoreactivity. For each specimen and antibody, the 27 
sectors were demeaned and standardized, setting their mean 
at 0 and their standard deviation at 1. Subsequently, per sec-
tor, a one-sample t test was performed over the 7 STN speci-
mens. Results underwent a false discovery rate correction 
to account for multiple comparisons. Significant t values 
indicated altered local expression levels.Ta
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STN specimens were then rasterized into 1000 sectors. The 
immunoreactivity in the identified sectors was entered as a 
dependent variable in a set of general linear models (GLMs). 
As an error function, the negative binomial was used to 
account for the observed overdispersion. The negative bino-
mial describes a Poisson variable with a rate that is gamma 
distributed with parameter α.

Models were fit using maximum likelihood estimation. 
Since maximum likelihood estimation is susceptible to outly-
ing data points, sectors with extremely high intensity (defined 
here as five times the interquartile range above the median 
after a log-transformation) were excluded from these analyses 
(0.07% of all data points). Optimization was performed using 
differential evolution (Storn and Price 1997) with population 
sizes set to 20 times the number of parameters in a model, 
and up to 5000 iterations. Subsequently, the parameters were 
refined using least-squares optimization. Both optimization 
algorithms were implemented in Python library Scipy [version 
1.2.0 (Jones E, Oliphant E, Peterson P)]. Parameter optimiza-
tion bounds were set between [− 15, 200] for �0 (all models) 
and �1−2 (Models C–D); [− 2, 2] for �1−3 (Model B); [0, 1] for 
�1−2 (Models 3–4); [0.2, 0.6] for �1 and [0.4, 0.8] for �1 ; [1, 
1×1020] for � (Model D) and α (all models). Parameters �1−2 
were constrained to ensure that each fit subdivision spans at 
least 20% of the length of the projection axis p, to prevent the 
optimization routine from identifying very small, anatomically 
implausible subdivisions.

The Bayesian information criterion [BIC (Schwarz 1978; 
Wagenmakers and Farrell 2004)] was used for model com-
parison. It is defined as BIC = −2 log (L) − k log (n) , where 
L is the likelihood of the data under the model, k the number 
of parameters of the model, and n the number of data points. 
Lower BIC values indicate a more parsimonious trade-off 
between quality of fit and model complexity. To compare 
BICs across protein markers and specimens, the weighted BIC 
(wBIC) of each model i was used:

where Δi(BIC) = BICi −min(BIC) . The wBIC values can be 
interpreted as the probability a model is the data-generating 
model under the assumption that the data-generating model 
is among the models under consideration (Wagenmakers 
and Farrell 2004). Higher wBIC values thus indicate more 
evidence for each model.

Data and computer code availability

The 10 × 10 × 10 grid data corresponding to the 1000 sec-
tors that were analyzed are available via https ://figsh are.
com/s/aee5a 09da2 45058 504a9 .

wiBIC =
e−

1

2
Δi(BIC)

∑K

k=1
e−

1

2
Δk(BIC)

,

Computer code is available via: https ://githu b.com/Steve 
nM1/histo chemi cal_mri_stn and https ://githu b.com/Steve 
nM1/pysta in.
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