454 research outputs found

    Une sonde photométrique pour l'analyse in situ : Principe, méthode, premiers essais

    Get PDF
    Certains composés dissous ne sont pas stables une fois prélevés hors de leur milieu. Pour éviter que l'information ne se perde entre le prélèvement et l'analyse, il est nécessaire d'effectuer cette dernière in situ. La solution que nous présentons, consiste à développer une réaction colorimétrique en profondeur; la cellule photométrique est immergée et reliée à un spectrophotomètre en surface, par 2 fibres optiques (fig. 1a, b, c). Cependant, lors d'un essai préliminaire, nous avons observé que, dans le circuit de mélange de la sonde, les proportions entre réactif et échantillon ne sont pas constantes. Ces variations de débits sont corrigées par des mesures à deux longueurs d'onde (λ1 et λ2)* et par l'adjonction d'un colorant auxiliaire ne perturbant pas la réaction calorimétrique. L'étalonnage se fait directement sur la cellule photométrique : dans un diagramme Absorbance à λ1 = f (Absorbance à λ2) (fig. 2), on place une droite d'étalonnage et des points particuliers. Les règles de mélange sont vérifiées indépendamment de toute réaction chimique avec différentes solutions d'hélianthine dans un tampon à pH 7 et du rouge de chlorophénol à la place du réactif (fig. 4 et 5). En outre nous utilisons le rouge de chlorophénol, jaune sous forme acide, comme colorant auxiliaire pour le dosage du fer total dans un premier essai in situ (lac d'Aydat, Puy de Dôme, France). Les résultats sont comparés à ceux obtenus par prélèvements et analyses au laboratoire (fig. 6). L'accord est satisfaisant. L'incorporation au système présenté, d'une pompe osmotique devrait permettre, avec cet appareillage simple, des mesures pendant plusieurs mois sans intervention.Various dissolved compounds are mot stables in surface conditions. We realized a prototype to collect chemical data related to redox sensitive species without any contact with the atmospheric oxygen.The principle of this probe for in situ measurements is to produce colorimetric reaction in depth. A photometric cell and a horizontal coiled glass tube for fluid mixing are immersed and connected with two optic fibers to a spectrophotometer on boat (fig. la, b, c). Reagent is injected continuously from surface and sample is sucked up with a peristaltic pump through a tubular filter.Every species which can be analysed by colorimetric method should be determined, in deep river or in lake, with this simple equipment.Nevertheless, during preliminary trial, we detected a lack of reproducibility in the mixing ratio of the sample with the complexing agent. The problem is solved by adding an auxiliary dye with reagent and measuring optical densities at two different wavelengths (λ1 and λ2). In the system, with a the sample proportion, absorbance A at λ is expressed as :A=ɛe∙l∙Ce∙α+ɛr∙l∙Cr∙(1-α)We suggest to calibrate directly the cell of the probe and work in a calibration graph. It is built with first, marking on an A1λ1=f(A2λ2)graph (fig. 2), the « pivot » point (P) (when α= 0), second, plotting the « calibration curve »A2=A1 (ɛe2/ɛe1)(when α= 1), third, plotting the different S1 (A1i, A2i) measured from standards. Therefore, if sample signal Re at two wavelengths is plotted in this graph, by joining P and Re, the straight line intersects with calibration curve at C. On this curve, interpolation of C between two standards determine the concentration of the analyte.Experimental verification of the mixing rule has been clone independently of chemical reaction, with different heliantine solutions in pH 7 buffer as samples and chlorophenol red as reagent, bath in laboratory and at 15 meters depth (Beffes lake, France) (fig. 4 and 5).Furthermore, chlorophenol red, previously tested, is used as auxiliary dye for total iron measurement, in Aydat lake (Puy de Dôme, France) for a first in situ trial.Results are compared to those got from oceanographic bottle sampling and laboratory analysis (fig. 6). Data from the probe are in good agreement with data from the laboratory method.Next development of this chemical sensor will consist in adding to the system an osmotic pump which should allow measurements without intervention during several months

    Kinematics of Black Hole X-ray Binary GRS 1915+105

    Full text link
    The space velocity of a stellar black hole encodes the history of its formation and evolution. Here we measure the 3-dimensional motion of the microquasar GRS 1915+105, using a decade of astrometry with the NRAO Very Long Baseline Array, together with the published radial velocity. The velocity in the Galactic Plane deviates from circular rotation by 53-80 +_ 8 km/s, where the range covers any specific distance from 6-12 kpc. Perpendicular to the plane, the velocity is only 10 +_ 4 km/s. The peculiar velocity is minimized at a distance 9-10 kpc, and is then nearly in the radial direction towards the Galactic Center. We discuss mechanisms for the origin of the peculiar velocity, and conclude that it is most likely a consequence of Galactic velocity diffusion on this old binary, rather than the result of a supernova kick during the formation of the 14 Mo black hole. Finally, a brief comparison is made with 4 other BH binaries whose kinematics are well determined.Comment: 16 pages, 4 figures. ApJ accepte

    Astrometric Effects of a Stochastic Gravitational Wave Background

    Get PDF
    A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.Comment: 23 pages, 2 figures, references added and minor text correction

    Detectability of Weakly Interacting Massive Particles in the Sagittarius Dwarf Tidal Stream

    Full text link
    Tidal streams of the Sagittarius dwarf spheroidal galaxy (Sgr) may be showering dark matter onto the solar system and contributing approx (0.3--23)% of the local density of our Galactic Halo. If the Sagittarius galaxy contains WIMP dark matter, the extra contribution from the stream gives rise to a step-like feature in the energy recoil spectrum in direct dark matter detection. For our best estimate of stream velocity (300 km/sec) and direction (the plane containing the Sgr dwarf and its debris), the count rate is maximum on June 28 and minimum on December 27 (for most recoil energies), and the location of the step oscillates yearly with a phase opposite to that of the count rate. In the CDMS experiment, for 60 GeV WIMPs, the location of the step oscillates between 35 and 42 keV, and for the most favorable stream density, the stream should be detectable at the 11 sigma level in four years of data with 10 keV energy bins. Planned large detectors like XENON, CryoArray and the directional detector DRIFT may also be able to identify the Sgr stream.Comment: 26 pages, 4 figure

    The effect of the motion of the Sun on the light-time in interplanetary relativistic experiments

    Full text link
    In 2002 a measurement of the effect of solar gravity upon the phase of coherent microwave beams passing near the Sun has been carried out with the Cassini mission, allowing a very accurate measurement of the PPN parameter γ\gamma. The data have been analyzed with NASA's Orbit Determination Program (ODP) in the Barycentric Celestial Reference System, in which the Sun moves around the centre of mass of the solar system with a velocity v⊙v_\odot of about 10 m/sec; the question arises, what correction this implies for the predicted phase shift. After a review of the way the ODP works, we set the problem in the framework of Lorentz (and Galilean) transformations and evaluate the correction; it is several orders of magnitude below our experimental accuracy. We also discuss a recent paper \cite{kopeikin07}, which claims wrong and much larger corrections, and clarify the reasons for the discrepancy.Comment: Final version accepted by Classical and Quantum Gravity (8 Jan. 2008

    Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited

    Full text link
    This report is a review of Darwin's classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo

    The first accurate parallax distance to a black hole

    Get PDF
    Using astrometric VLBI observations, we have determined the parallax of the black hole X-ray binary V404 Cyg to be 0.418 +/- 0.024 milliarcseconds, corresponding to a distance of 2.39 +/- 0.14 kpc, significantly lower than the previously accepted value. This model-independent estimate is the most accurate distance to a Galactic stellar-mass black hole measured to date. With this new distance, we confirm that the source was not super-Eddington during its 1989 outburst. The fitted distance and proper motion imply that the black hole in this system likely formed in a supernova, with the peculiar velocity being consistent with a recoil (Blaauw) kick. The size of the quiescent jets inferred to exist in this system is less than 1.4 AU at 22 GHz. Astrometric observations of a larger sample of such systems would provide useful insights into the formation and properties of accreting stellar-mass black holes.Comment: Accepted for publication in ApJ Letters. 6 pages, 2 figure

    Gaia Data Processing Architecture

    Get PDF
    Gaia is ESA's ambitious space astrometry mission the main objective of which is to astrometrically and spectro-photometrically map 1000 Million celestial objects (mostly in our galaxy) with unprecedented accuracy. The announcement of opportunity for the data processing will be issued by ESA late in 2006. The Gaia Data Processing and Analysis Consortium (DPAC) has been formed recently and is preparing an answer. The satellite will downlink close to 100 TB of raw telemetry data over 5 years. To achieve its required accuracy of a few 10s of Microarcsecond astrometry, a highly involved processing of this data is required. In addition to the main astrometric instrument Gaia will host a Radial Velocity instrument, two low-resolution dispersers for multi-color photometry and two Star Mappers. Gaia is a flying Giga Pixel camera. The various instruments each require relatively complex processing while at the same time being interdependent. We describe the overall composition of the DPAC and the envisaged overall architecture of the Gaia data processing system. We shall delve further into the core processing - one of the nine, so-called, coordination units comprising the Gaia processing system.Comment: 10 Pages, 2 figures. To appear in ADASS XVI Proceeding

    Tidal torques. A critical review of some techniques

    Full text link
    We point out that the MacDonald formula for body-tide torques is valid only in the zeroth order of e/Q, while its time-average is valid in the first order. So the formula cannot be used for analysis in higher orders of e/Q. This necessitates corrections in the theory of tidal despinning and libration damping. We prove that when the inclination is low and phase lags are linear in frequency, the Kaula series is equivalent to a corrected version of the MacDonald method. The correction to MacDonald's approach would be to set the phase lag of the integral bulge proportional to the instantaneous frequency. The equivalence of descriptions gets violated by a nonlinear frequency-dependence of the lag. We explain that both the MacDonald- and Darwin-torque-based derivations of the popular formula for the tidal despinning rate are limited to low inclinations and to the phase lags being linear in frequency. The Darwin-torque-based derivation, though, is general enough to accommodate both a finite inclination and the actual rheology. Although rheologies with Q scaling as the frequency to a positive power make the torque diverge at a zero frequency, this reveals not the impossible nature of the rheology, but a flaw in mathematics, i.e., a common misassumption that damping merely provides lags to the terms of the Fourier series for the tidal potential. A hydrodynamical treatment (Darwin 1879) had demonstrated that the magnitudes of the terms, too, get changed. Reinstating of this detail tames the infinities and rehabilitates the "impossible" scaling law (which happens to be the actual law the terrestrial planets obey at low frequencies).Comment: arXiv admin note: sections 4 and 9 of this paper contain substantial text overlap with arXiv:0712.105

    GAIA: Composition, Formation and Evolution of the Galaxy

    Get PDF
    The GAIA astrometric mission has recently been approved as one of the next two `cornerstones' of ESA's science programme, with a launch date target of not later than mid-2012. GAIA will provide positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars throughout our Galaxy (and into the Local Group), amounting to about 1 per cent of the Galactic stellar population. GAIA's main scientific goal is to clarify the origin and history of our Galaxy, from a quantitative census of the stellar populations. It will advance questions such as when the stars in our Galaxy formed, when and how it was assembled, and its distribution of dark matter. The survey aims for completeness to V=20 mag, with accuracies of about 10 microarcsec at 15 mag. Combined with astrophysical information for each star, provided by on-board multi-colour photometry and (limited) spectroscopy, these data will have the precision necessary to quantify the early formation, and subsequent dynamical, chemical and star formation evolution of our Galaxy. Additional products include detection and orbital classification of tens of thousands of extra-Solar planetary systems, and a comprehensive survey of some 10^5-10^6 minor bodies in our Solar System, through galaxies in the nearby Universe, to some 500,000 distant quasars. It will provide a number of stringent new tests of general relativity and cosmology. The complete satellite system was evaluated as part of a detailed technology study, including a detailed payload design, corresponding accuracy assesments, and results from a prototype data reduction development.Comment: Accepted by A&A: 25 pages, 8 figure
    • …
    corecore