5 research outputs found

    Evaluation of the oxidative stability of Chipotle chili (Capsicum annuum L.) oleoresins in avocado oil

    Get PDF
    Capsicum annuum L. (Chipotle chili) is a natural source of bioactive metabolites with antioxidant properties. The objective of this research was to obtain and characterize the oxidative stability under storage of Chipotle chili oleoresins extracted with cold-pressed avocado oil. The most efficient conditions obtained to extract carotenoids and phenolic compounds were at 1:3 ratio (chipotle chili: avocado oil; w:v) at room temperature in darkness during 48 h. At the end of the harshest conditions (45 °C, 30 days), the extracts were stable to lipid oxidation with a final Totox value of 27.34, a carotenoid preservation of 85.6%, antioxidant activity retention of 80.66% and a color change (ΔE) of 1.783. The kinetic constants obtained were higher for peroxide formation than for carotenoid degradation. The oleoresins obtained could be considered an economic and sustainable alternative to extract carotenoids with good oxidation stability that could be used in foodstuffs

    Cyperus spp.: A Review on Phytochemical Composition, Biological Activity, and Health-Promoting Effects

    Get PDF
    Cyperaceae are a plant family of grass-like monocots, comprising 5600 species with a cosmopolitan distribution in temperate and tropical regions. Phytochemically, Cyperus is one of the most promising health supplementing genera of the Cyperaceae family, housing ˜950 species, with Cyperus rotundus L. being the most reported species in pharmacological studies. The traditional uses of Cyperus spp. have been reported against various diseases, viz., gastrointestinal and respiratory affections, blood disorders, menstrual irregularities, and inflammatory diseases. Cyperus spp. are known to contain a plethora of bioactive compounds such as a-cyperone, a-corymbolol, a-pinene, caryophyllene oxide, cyperotundone, germacrene D, mustakone, and zierone, which impart pharmacological properties to its extract. Therefore, Cyperus sp. extracts were preclinically studied and reported to possess antioxidant, anti-inflammatory, antimicrobial, anticancer, neuroprotective, antidepressive, antiarthritic, antiobesity, vasodilator, spasmolytic, bronchodilator, and estrogenic biofunctionalities. Nonetheless, conclusive evidence is still sparse regarding its clinical applications on human diseases. Further studies focused on toxicity data and risk assessment are needed to elucidate its safe and effective application. Moreover, detailed structure-activity studies also need time to explore the candidature of Cyperus-derived phytochemicals as upcoming drugs in pharmaceuticals.NM acknowledges the Portuguese Foundation for Science and Technology under the Horizon 2020 Program (PTDC/PSI-GER/28076/2017)

    Oleoresins from Capsicum spp.: Extraction Methods and Bioactivity

    No full text
    Capsicum spp. fruit is one of the most produced vegetables around the world, and it is consumed both as fresh vegetable and as a spice like a food additive for their characteristic red color and, in many cases, its pungency. In addition to its economic importance, the bioactivity of some important compounds such as capsaicinoids and carotenoids has promoted its research. The use of Capsicum oleoresins has been increased due to its advantages comparing with the traditional dry spice. These include obtaining higher quality products with the desired content of bioactive and flavored substances. The wide diversity of extraction methods including water extraction, organic solvent extraction, microwave-assisted extraction, and ultrasound assisted extraction as well as supercritical fluid extraction among others are discussed in the present review. Moreover, pretreatments such as chemical treatments, osmotic dehydration, sun and oven drying, and freeze-drying commonly used before the extraction are also presented. Due to its importance, Capsicum oleoresins produced with “green” solvents and the improvement of fractional extraction techniques that allow to obtain separately the various bioactive fractions will continue under research for further development
    corecore