1,719 research outputs found

    Modeling specific action potentials in the human atria based on a minimal reaction-diffusion model

    Full text link
    We present an effective method to model empirical action potentials of specific patients in the human atria based on the minimal model of Bueno-Orovio, Cherry and Fenton adapted to atrial electrophysiology. In this model, three ionic are currents introduced, where each of it is governed by a characteristic time scale. By applying a nonlinear optimization procedure, a best combination of the respective time scales is determined, which allows one to reproduce specific action potentials with a given amplitude, width and shape. Possible applications for supporting clinical diagnosis are pointed out.Comment: 16 pages, 8 figure

    Influence of external magnetic fields on growth of alloy nanoclusters

    Full text link
    Kinetic Monte Carlo simulations are performed to study the influence of external magnetic fields on the growth of magnetic fcc binary alloy nanoclusters with perpendicular magnetic anisotropy. The underlying kinetic model is designed to describe essential structural and magnetic properties of CoPt_3-type clusters grown on a weakly interacting substrate through molecular beam epitaxy. The results suggest that perpendicular magnetic anisotropy can be enhanced when the field is applied during growth. For equilibrium bulk systems a significant shift of the onset temperature for L1_2 ordering is found, in agreement with predictions from Landau theory. Stronger field induced effects can be expected for magnetic fcc-alloys undergoing L1_0 ordering.Comment: 10 pages, 3 figure

    Time-Dependent Density Functional Theory for Driven Lattice Gas Systems with Interactions

    Full text link
    We present a new method to describe the kinetics of driven lattice gases with particle-particle interactions beyond hard-core exclusions. The method is based on the time-dependent density functional theory for lattice systems and allows one to set up closed evolution equations for mean site occupation numbers in a systematic manner. Application of the method to a totally asymmetric site exclusion process with nearest-neighbor interactions yields predictions for the current-density relation in the bulk, the phase diagram of non-equilibrium steady states and the time evolution of density profiles that are in good agreement with results from kinetic Monte Carlo simulations.Comment: 11 pages, 3 figure

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Regular vs. classical M\"obius transformations of the quaternionic unit ball

    Full text link
    The regular fractional transformations of the extended quaternionic space have been recently introduced as variants of the classical linear fractional transformations. These variants have the advantage of being included in the class of slice regular functions, introduced by Gentili and Struppa in 2006, so that they can be studied with the useful tools available in this theory. We first consider their general properties, then focus on the regular M\"obius transformations of the quaternionic unit ball B, comparing the latter with their classical analogs. In particular we study the relation between the regular M\"obius transformations and the Poincar\'e metric of B, which is preserved by the classical M\"obius transformations. Furthermore, we announce a result that is a quaternionic analog of the Schwarz-Pick lemma.Comment: 14 page
    corecore