2,403 research outputs found

    Determining orbits for the Milky Way's dwarfs

    Get PDF
    We calculate orbits for the Milky Way dwarf galaxies with proper motions, and compare these to subhalo orbits in a high-resolution cosmological simulation. We use the simulation data to assess how well orbits may be recovered in the face of measurement errors, a time-varying triaxial gravitational potential and satellite-satellite interactions. For present measurement uncertainties, we recover the apocentre ra and pericentre rp to ∼40 per cent. With improved data from the Gaia satellite we should be able to recover ra and rp to ∼14 per cent, respectively. However, recovering the 3D positions and orbital phase of satellites over several orbits is more challenging. This owes primarily to the non-sphericity of the potential and satellite interactions during group infall. Dynamical friction, satellite mass-loss and the mass evolution of the main halo play a more minor role in the uncertainties. We apply our technique to nine Milky Way dwarfs with observed proper motions. We show that their mean apocentre is lower than the mean of the most massive subhaloes in our cosmological simulation, but consistent with the most massive subhaloes that form before z= 10. This lends further support to the idea that the Milky Way's dwarfs formed before reionizatio

    Distinct magnetotransport and orbital fingerprints of chiral bobbers

    Full text link
    While chiral magnetic skyrmions have been attracting significant attention in the past years, recently, a new type of a chiral particle emerging in thin films −- a chiral bobber −- has been theoretically predicted and experimentally observed. Here, based on theoretical arguments, we provide a clear pathway to utilizing chiral bobbers for the purposes of future spintronics by uncovering that these novel chiral states possess inherent transport fingerprints that allow for their unambiguous electrical detection in systems comprising several types of chiral states. We reveal that unique transport and orbital characteristics of bobbers root in the non-trivial magnetization distribution in the vicinity of the Bloch points, and demonstrate that tuning the details of the Bloch point topology can be used to drastically alter the emergent response properties of chiral bobbers to external fields, which bears great potential for engineering chiral dynamics and cognitive computing.Comment: Supplementary available upon reques

    Oudheidkundig Onderzoek van de Sint-Petruskerk te Wintershoven

    Get PDF

    Gallo-Romeinse tumulus (?) te Hoelbeek

    Get PDF

    Wealth redistribution with finite resources

    Full text link
    We present a simplified model for the exploitation of finite resources by interacting agents, where each agent receives a random fraction of the available resources. An extremal dynamics ensures that the poorest agent has a chance to change its economic welfare. After a long transient, the system self-organizes into a critical state that maximizes the average performance of each participant. Our model exhibits a new kind of wealth condensation, where very few extremely rich agents are stable in time and the rest stays in the middle class.Comment: 4 pages, 3 figures, RevTeX 4 styl

    Tertiary Minette and Melanephelinite Dikes, Wasatch Plateau, Utah - Records of Mantle Heterogeneities and Changing Tectonics

    Get PDF
    A swarm of minette and melanephelinite dikes is exposed over 2500 km2 in and near the Wasatch Plateau, central Utah, along the western margin of the Colorado Plateaus in the transition zone with the Basin and Range province. To date, 110 vertical dikes in 25 dike sets have been recognized. Strikes shift from about N80-degrees-W for 24 Ma dikes, to about N60-degrees-W for 18 Ma, to due north for 8-7 m.y. These orientations are consistent with a shift from east-west Oligocene compression associated with subduction to east-west late Miocene crustal extension. Minettes are the most common rock type; mica-rich minette and mica-bearing melanephelinite occurs in 24 Ma dikes, whereas more ordinary minette is found in 8-7 Ma dikes. One melanephelinite dike is 18 Ma. These mafic alkaline rocks are transitional to one another in modal and major element composition but have distinctive trace element patterns and isotopic compositions; they appear to have crystallized from primitive magmas. Major, trace element, and Nd-Sr isotopic data indicate that melanephelinite, which has similarities to ocean island basalt, was derived from small degree melts of mantle with a chondritic Sm/Nd ratio probably located in the asthenosphere, but it is difficult to rule out a lithospheric source. In contrast, mica-bearing rocks (mica melanephelinite and both types of minette) are more potassic and have trace element patterns with strong Nb-Ta depletions and Sr-Nd isotopic compositions caused by involvement with a component from heterogeneously enriched lithospheric mantle with long-term enrichment of Rb or light rare earth elements (REE) (epsilon Nd as low as - 15 in minette). Light REE enrichment must have occurred anciently in the mid-Proterozoic when the lithosphere was formed and is not a result of Cenozoic subduction processes. After about 25 Ma, foundering of the subducting Farallon plate may have triggered upwelling of warm asthenospheric mantle to the base of the lithosphere. Melanephelinite magma may have separated from the asthenosphere and, while rising through the lithosphere, provided heat for lithospheric magma generation. Varying degrees of interaction between melanephelinite and small potassic melt fractions derived from the lithospheric mantle can explain the gradational character of the melanephelinite to minette suite
    • …
    corecore