19 research outputs found

    Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters

    Get PDF
    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments

    Acute disseminated encephalomyelitis with delayed onset and feasibility of the Miethke shunt and sensor reservoir system : a case report

    No full text
    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated demyelinating central nervous system disorder with predilection for early childhood. Delayed onset of ADEM is rare, and herein we present a previously healthy 5-year-old boy, with an unusual clinical course of ADEM with high intracranial pressure (ICP) and acute visual loss that was at first diagnosed as idiopathic intracranial hypertension without papilledema (IIHWOP). The boy underwent acute neurosurgical intervention with ventriculoperitoneal (VP) shunt using Miethke valve and sensor reservoir system and received high-dose steroid treatment with symptom relieve within days. This is the first case report using this system in such a young child, and we find it feasible and valuable also in younger children when VP shunt with ICP measurement is indicated

    Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle

    Get PDF
    Cyclin-dependent kinases CDK4 and CDK6 are essential for the control of the cell cycle through the G1 phase. Aberrant expression of CDK4 and CDK6 is a hall- mark of cancer, which would suggest that CDK4 and CDK6 are attractive targets for cancer therapy. Herein, we report that calcein AM is a potent specific inhibitor of CDK4 and CDK6 in HCT116 human colon adenocarcinoma cells, inhibiting retinoblastoma protein (pRb) phosphorylation and inducing cell cycle arrest in the G1 phase. The metabolic effects of calcein AM (the calcein acetoxymethyl-ester) on HCT116 cells were also evaluated and the flux between the oxidative and non-oxidative branches of the pentose phos-phate pathway was significantly altered. To elucidate whe-ther these metabolic changes were due to the inhibition of CDK4 and CDK6, we also characterized the metabolic profile of a CDK4, CDK6 and CDK2 triple knockout of mouse embryonic fibroblasts. The results show that the metabolic profile associated with the depletion of CDK4, CDK6 and CDK2 coincides with the metabolic changes induced by calcein AM on HCT116 cells, thus confirming that the inhibition of CDK4 and CDK6 disrupts the balance between the oxidative and non-oxidative branches of the pentose phosphate pathway. Taken together, these results indicate that low doses of calcein can halt cell division and kill tumor cells. Thus, selective inhibition of CDK4 and CDK6 may be of greater pharmacological interest, since inhibitors of these kinases affect both cell cycle progression and the robust metabolic profile of tumors

    Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy

    No full text
    The progression of many solid tumors is driven by de-regulation of multiple common pathways, particularly Rb, PI (3) K/Akt and p53. Prior studies identified TopBP1as a key mediator for the oncogenic gain-of-function activities of mutant p53 (mutp53) in cancer. In Akt-hyperactive cancer, TopBP1 forms oligomers and represses E2F1-dependent apoptosis. Here we perform a molecular docking screening and identify a lead compound, calcein, capable of blocking TopBP1 oligomerization and p53 binding, resulting in re-activation of E2F1-dependent apoptosis and blockade of mutp53 gain-of-function. Calcein AM, the cell permeable derivative of calcein, shows significant anti-tumor activity in a wide-spectrum of cultured cancer cells harboring high TopBP1 levels. These biochemical findings are recapitulated in breast cancer xenograft models. Thus, our study provides proof-of-concept evidence for targeting TopBP1, a convergent point of multiple pathways, as a cancer therapy

    Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm

    Full text link
    OBJECTIVES: The aim of the present study was to investigate different fluorescence-based, two-color viability assays for visualization and quantification of initial bacterial adherence and to establish reliable alternatives to the ethidium bromide staining procedure. MATERIALS AND METHODS: Bacterial colonization was attained in situ on bovine enamel slabs (n = 6 subjects). Five different live/dead assays were investigated (fluorescein diacetate (FDA)/propidium iodide (PI), Syto 9/PI (BacLight®), FDA/Sytox red, Calcein acetoxymethyl (AM)/Sytox red, and carboxyfluorescein diacetate (CFDA)/Sytox red). After 120 min of oral exposure, analysis was performed with an epifluorescence microscope. Validation was carried out, using the colony-forming units for quantification and the transmission electron microscopy for visualization after staining. RESULTS: The average number of bacteria amounted to 2.9 ± 0.8 × 10(4) cm(-2). Quantification with Syto 9/PI and Calcein AM/Sytox red yielded an almost equal distribution of cells (Syto 9/PI 45 % viable, 55 % avital; Calcein AM/Sytox red 52 % viable, 48 % avital). The live/dead ratio of CFDA/Sytox red and FDA/Sytox red was 3:2. An aberrant dispersal was recorded with FDA/PI (viable 34 %, avital 66 %). The TEM analysis indicated that all staining procedures affect the structural integrity of the bacterial cells considerably. CONCLUSION: The following live/dead assays are reliable techniques for differentiation of viable and avital adherent bacteria: BacLight, FDA/Sytox red, Calcein AM/Sytox red, and CFDA/Sytox red. These fluorescence-based techniques are applicable alternatives to toxic and instable conventional assays, such as the staining procedure based on ethidium bromide. CLINICAL RELEVANCE: Differentiation of viable and avital adherent bacteria offers the possibility for reliable evaluation of different mouth rinses, oral medication, and disinfections
    corecore